
XML: the refresher 1 Humanities Computing Unit

XML: the refresher

Lou Burnard
July 2000

XML: the refresher 2 Humanities Computing Unit

Topics
☛ A smidgeon of theory

☛ The rules of the game

☛ Are you well formed?

☛ Making the rules

☛ Are you valid?

☛ What use is a DTD?

XML: the refresher 3 Humanities Computing Unit

Electronic Texts in Humanities
Research
☛ the works we study are more than simply

sequences of glyphs

☛ they have structure and context

☛ and they also have multiple readings

☛ encoding or markup provides a means of
making such readings explicit

☛ only that which is explicit can be digitally
processed

Are the needs of the sciences really that different?

XML: the refresher 4 Humanities Computing Unit

XML: what it is and why you
should care
☛ XML is structured data represented as strings

of text

☛ XML looks like HTML, except that:-

☛ XML is extensible
☛ XML must be well-formed
☛ XML can be validated

☛ XML is application-, platform-, and vendor-
independent

☛ XML empowers the content provider and
facilitates data integration

XML: the refresher 5 Humanities Computing Unit

A smidgeon of theory
materia appetit formam, ut virum foemina

materia bytes, chars, strings, numbers, dates,
part-numbers...

forma records, tables, trees

Two XML principles:

☛ content and structure are separated from
processing

☛ content is self-describing

XML: the refresher 6 Humanities Computing Unit

XML terminology
An XML document contains:-

☛ elements, possibly bearing attributes

☛ processing instructions

☛ entity references

☛ CDATA sections

An XML document must be well-formed and may
be valid

XML: the refresher 7 Humanities Computing Unit

The rules of the XML Game
☛ An XML document represents a (kind of) tree

☛ It has a single root and many nodes

☛ Each node can be

☛ a subtree
☛ a single element (possibly bearing some

attributes)
☛ a string of character data

☛ Each element has a type or generic identifier

☛ Attribute names are predefined for a given
element; values can also be constrained

XML: the refresher 8 Humanities Computing Unit

Representing an XML tree
☛ An XML document is encoded as a linear string

of characters

☛ It begins with a special processing instruction

☛ Element occurrences are marked by start- and
end-tags

☛ The characters < and & are Magic and must
always be "escaped"

☛ Comments are delimited by <!– and –>

☛ CDATA sections are delimited by <![CDATA[and
]]>

☛ Attribute name/value pairs are supplied on the
start-tag and may be given in any order

☛ Entity references are delimited by & and ;

XML: the refresher 9 Humanities Computing Unit

An example XML document
<?xml version="1.0" encoding="utf-8" ?>
<cookBook>

<recipe n="1">
<head>Nail Soup</head>
<ingredientList> </ingredientList>
<procedure> </procedure>

</recipe>

<recipe n="2">
<!- contents of second recipe here ->
</recipe>

<!- hic desunt multa ->

</cookBook>

XML: the refresher 10 Humanities Computing Unit

XML syntax: the small print
What does it mean to be well-formed?

1. there is a single root node containing the whole
of an XML document

2. each subtree is properly nested within the root
node

3. names are always case sensitive

4. start-tags and end-tags are always mandatory
(except that a combined start-and-end tag may
be used for empty nodes)

5. attribute values are always quoted

XML: the refresher 11 Humanities Computing Unit

Splot the mistake
<greeting>Hello world!</greeting>
<greeting>Hello world!</Greeting>

<greeting><grunt>Ho</grunt> world!</greeting>
<grunt>Ho <greeting>world!</greeting></grunt>
<greeting><grunt>Ho world!</greeting></grunt>

<grunt type=loud>Ho</grunt>
<grunt type="loud"></grunt>

<grunt type= "loud">
<grunt type ="loud"/>

XML: the refresher 12 Humanities Computing Unit

Defining the rules
A valid XML document will reference a document
type declaration (DTD) :
<!DOCTYPE cookBook SYSTEM "cookbook.dtd">

A DTD specifies:

☛ names for all your elements

☛ names and default values for their attributes

☛ rules about how elements can nest

☛ names for re-usable pieces of data (entities)

☛ and a few other things

n.b. A DTD doesnot specify anything about what
elements "mean"

XML: the refresher 13 Humanities Computing Unit

Defining an element
An element declaration takes the form
<!ELEMENT name contentModel >

name is the name of the element

contentModel defines valid content for the
element

The content of an element can be:

☛ #PCDATA

☛ EMPTY

☛ other elements

☛ mixed content combines PCDATA and other
elements

XML: the refresher 14 Humanities Computing Unit

Content models
Within a content model:

☛ sequence is indicated by comma

☛ alternation is indicated by |

☛ grouping is indicated by parentheses

Occurrence indicators:
[nothing] once ? optionally once
+ one or more times * zero or more times If

#PCDATA appears in a content model...

☛ it can only appear once

☛ it must appear first

☛ if in an alternation, only the * occurrence
indicator is allowed

XML: the refresher 15 Humanities Computing Unit

For example...
<!ELEMENT a (b+) >
<!ELEMENT b EMPTY>
<!ELEMENT c (#PCDATA)>
<!ELEMENT a (b,c) >
<!ELEMENT a (b|c)* >
<!ELEMENT a (#PCDATA|b|c)* >
<!ELEMENT a (b, (c|d)*) >
<!ELEMENT a (b?, (c|d)+) >
<!ELEMENT a (b?, (c+|d+)) >

XML: the refresher 16 Humanities Computing Unit

Defining an attribute list
An attribute list declaration takes the form
<!ATTLIST name attributelist >

name is the name of the element bearing these
attributes

attributeList is a list of attribute specifications,
each containing

☛ an attribute name
☛ a declared value
☛ a default value

For example:
<!ATTLIST recipe serves CDATA #REQUIRED

id ID #IMPLIED
tested (yes|no|maybe) "maybe">

XML: the refresher 17 Humanities Computing Unit

Defining an attribute list (2)
The range of possibilities is actually rather limited:

declared value can be

☛ an explicit list e.g. (fish|fowl|herring)
☛ CDATA
☛ ID, IDREF, or IDREFS

default value can be

☛ an explicit value e.g. "fish"
☛ #IMPLIED
☛ #REQUIRED
☛ FIXED

XML: the refresher 18 Humanities Computing Unit

An example DTD
<!ELEMENT cookBook (recipe+)>
<!ELEMENT recipe (head?, (ingredi-
entList|procedure|para)*) >
<!ATTLIST recipe serves CDATA #IMPLIED>
<!ELEMENT head (#PCDATA) >
<!ELEMENT ingredientList (ingredient+)>
<!ELEMENT ingredient (#PCDATA|food|quantity)* >
<!ELEMENT procedure (step+) >
<!ELEMENT food (#PCDATA)>
<!ATTLIST food

type (veg|prot|fat|sugar|flavour|unspec) "unspec"
calories (high|medium|low|none|unknown) "unknown" >

<!ELEMENT quantity EMPTY >
<!ATTLIST quantity value CDATA #REQUIRED

units CDATA #IMPLIED
exact (Y|N) "N">

<!ELEMENT para (#PCDATA|food)*>
<!ELEMENT step (#PCDATA|food)*>

XML: the refresher 19 Humanities Computing Unit

Entities
An entity is a named sequence of characters,
predefined in a DTD for convenience.
Typical uses include:

☛ to represent characters which cannot reliably be
typed in

☛ as a short cut for boiler plate text

☛ containers for external (non-XML) data such as
graphics

☛ as a means of abbreviating parts of a DTD
(parameter entities)

The Unicode standard includes entity names and
encodings for most of the world’s writing systems

XML: the refresher 20 Humanities Computing Unit

Entities: some examples
<!ENTITY mdash "—">
<!ENTITY hcu "Humanities Computing Unit">
<!ENTITY fig1 SYSTEM "fig1.bmp" NDATA BMP>
<!ENTITY % foodTypes

"(veg|prot|fat|sugar|flavour|unspec)">

A parameter entity is one way of changing the
range of values permitted for attribute values.
<!ATTLIST food type %foodTypes; #IMPLIED>

Entity definitions (of whatever kind) in the DTD
may be over-ridden in the DTD subset:
<!DOCTYPE cookBook SYSTEM "cookbook.dtd" [
<!ENTITY % foodTypes "(good|bad|indifferent)">
]>

XML: the refresher 21 Humanities Computing Unit

What use is a DTD?
☛ A DTD is very useful at data preparation time

(e.g. to enforce consistency), but redundant at
other times

☛ If a document is well-formed, its DTD can be
(almost) entirely recreated from it.

☛ DTDs don’t allow you to specify much by the
way of content validation

☛ Unlike other parts of the XML family, DTDs are
not expressed in XML

The XML Schema Language addresses these
issues, and may eventually replace the DTD
entirely... maybe.

XML: the refresher 22 Humanities Computing Unit

XML: a licence for ill?
XML allows you to make up your own tags, and
doesn’t require a DTD... isn’t that rather
dangerous?

☛ XML allows you to name elements freely

☛ one man’s <p> is another’s <para> (or is it?)

☛ the appearance of interchangeability may be
worse than its absence

Namespaces provide a partial solution (but are
incompatible with the use of a DTD)

XML: the refresher 23 Humanities Computing Unit

Namespaces
A name space associates a namespace prefix with
some unique identifier (looks like a URL but isn’t)
It is usually defined on the root element of a
document (but need not be)
<root xmlns:mutt="mutt.co.uk"

xmlns:jeff="www.jeff.org">

The namespace prefix can then be used to
distinguish for example
<mutt:table> </mutt:table>
<jeff:table> </jeff:table>

An XML processor can be told to process
elements from different namespaces differently

XML: the refresher 24 Humanities Computing Unit

Defaulting namespaces
☛ If no namespace prefix appears in a tagname, it

is said to belong to the default namespace
<jeff:table><!- a jeff type table -></jeff:table>
<table>Some other kind of table</table>

☛ The default namespace may be defined on the
root element of the document

<root xmlns="mutt.co.uk">

XML: the refresher 25 Humanities Computing Unit

DTD : what does it really
mean?
☛ To get the best out of XML, you need two kinds

of DTD:

☛ document type declaration : elements,
attributes, entities, notations (syntactic
constraints)

☛ document type definition : usage and
meaning constraints on the foregoing

☛ Published specifications (if you can find them)
for XML DTDs usually combine the two, hence
they lack modularity

XML: the refresher 26 Humanities Computing Unit

Some typical scenarios
1. Make up your own DTD

☛ ... starting from scratch
☛ ... by combining components from one or

more pre-existing conceptual frameworks
(aka architecture or namespace)

2. Customize a pre-existing DTD

☛ definitions should be meaningful within a
given user community

☛ declarations should be appropriate to a
given set of applications

The TEI is a good candidate for the second
approach

