
1 Overview
Despite the availability of Unicode, text encoders still sometimes find that the published repertoire of available
characters and glyphs is inadequate to their needs. This is particularly the case when dealing with ancient
languages, for example. These Guidelines provide a mechanism to satisfy that need, while retaining compatibility
with standards.

If encoders encounter some graphical unit in a document they want to render electronically, the first question that
needs to be asked is: ‘Is this a character?’ To determine whether a particular graphical unitis a character or not,
see Terminology and key concepts.

If the unit is indeed determined to be a character, the next question is, ‘Has this character been encoded already?’
In order to determine if a character has been encoded, users should follow the following steps:

1. Check the Unicode website, first reading the webpage Where is my Character?", then the code charts).
Alternatively, users can check the latest published version of The Unicode Standard, though the website is
often more up to date than the printed version, and should be checked for preference.

The pictures (‘glyphs’) in the Unicode code charts are only meant to be representative, not definitive. If
a specific form of an already encoded character is required for a project, refer to the guidelines contained
below under Annotating Characters.

2. Check the Proposed New Characters webpage (http://unicode.org/alloc/Pipeline.html)
to see whether the character is in line for approval.

3. Ask on the Unicode email list to determine if a proposal is pending, or whether this is indeed a new character
(or if this not a character at all, in which case it would not be eligible for addition to the Unicode standard).

Since there are now close to 100,000 characters in Unicode, chances are good that what you need is already there,
but it might not be easy to find, since it might have a different name in Unicode. Try a bit harder and use other
sites, for examplehttp://www.eki.ee/letter , which allows also searches based on scripts and languages.

An encoded character may be precomposed or it may be formed from base characters and combining diacritical
marks. Either will suffice for a character to be "found" as an encoded character.

If this first question has been considered and no suitable form has been found in such a repertoire, the next question
will be: ‘Does the graphical unit in question represent a variant form of a known character, or does it represent a
completely unencoded character?’ If the character is determined to be missing from Unicode, it would be helpful
to submit the new character for inclusion (seehttp://unicode.org/pending/proposals.html).

These guidelines will help you proceed once you have identified a given graphical unit as either a variant or an
unencoded character. Determining this will require knowledge of the contents of the document that you have. The
first case will be calledannotationof a character, while the second case will be calledaddingof a new character.
How to handle graphical units that represent variants will be discussed below (3. Annotating characters) while the
problem of representing new characters will be dealt with in section 4. Adding new characters.

While there is some overlap between these requirements, distinct specialized markup constructs have been created
for each of these cases as explained in section 2. Markup constructs for representing non-standard characters
below. The following section will then proceed to discuss how to apply them to the problems at hand, discussing
annotation of existing characters in section 3. Annotating characters and finally creation of new ones in 4. Adding
new characters.

2 Markup constructs for representing non-standard characters
The module provides a mechanism to declare characters additional to those available from the document character
set. XML allows for a document (or document component) to declare that it uses only a named subset of Unicode
characters: this is specified by the encoding parameter on the XML declaration. In such a case, it might be
necessary to declare as additional characters some characters already defined by Unicode, but not available in the
named subset. Generally speaking, however, the document character set will be Unicode, and this mechanism will
be needed only for characters not defined by Unicode.

The mechanism provided here consists functionally of two parts:

• an element<c> , which serves as a proxy for new characters or glyphs

1

cew01.html#D4-42
http://www.unicode.org
http://unicode.org/standard/where/
http://unicode.org/alloc/Pipeline.html
http://www.eki.ee/letter
http://unicode.org/pending/proposals.html

• an element<charDesc> , which serves as a container for information about this character. Such
information is needed to identify and process this character properly.

When the module is included in a TEI schema, the<charDesc> element is added to thetei.encoding class,
and the<c> element is added to the phrase class. These elements and their components are documented in the
rest of this section.

The Unicode standard defines properties for all the characters it defines in the the Unicode Character Database,
knowledge of which is usually built into text processing systems. Since the characters that are instantiated with
the<c> element either do not exist in Unicode at all, or are not available in the subset of Unicode in use, their
properties are not readily available. The<charDesc> element makes it possible to store such properties for use
by applications in a standard way.

The list of attributes (properties) for characters is modelled on those in the Unicode Character Database, which
distinguishes normative and informative character properties. Additional, non-Unicode, properties may also be
supplied. Since the list of properties will vary with different versions of The Unicode Standard, there may not be
an exact correspondence between them and the list of properties defined in these Guidelines.

Usage examples for these elements are given below at 3. Annotating characters and 4. Adding new characters.
The module itself is formally defined in section 6. Additional module defined by this section below. It defines the
following additional elements:

• <charDesc>provides descriptive information about characters or glyphs additional to that implied by the
current document character set.

No attributes other than those globally available (see definition for tei.global.attributes)

• <c> represents a character.

ref identifies the character or glyph description intended.

The following elements may appear within a<charDesc> element:

•

• <char> provides descriptive information about a character which is not otherwise available in the document
character set.

ucs specifies the codepoint used for this character in the current document.

• <glyph> provides descriptive information about a character glyph which is not otherwise available in the
document character set.

ucs specifies the codepoint used for this glyph in the current document.

The<char> and<glyph> elements have similar contents and are used in similar ways, but their functions are
different. The<char> element is provided to define a character which is not available in the current document
character set, for whatever reason, as stated above. The<glyph> element is used to annotate an existing
character, usually by providing a specific glyph that shows how a character appeared in the original document.
Unicode codepoints refer to a very general abstract character, which can be rendered by a very large number
of possible representations. The<glyph> element is provided for cases where the encoder wants to specify a
specific glyph (or family of glyphs) out of all possible glyphs.

As noted above, theucs attribute specifies the codepoint used for the character or glyph under discussion. Its
value must match the patterndatatype.ucs , which is also defined by this module. Values matching this pattern
take the formU+xxxx , wherexxxx is the hexadecimal representation of any valid Unicode code point, including
values taken from the ‘Private Use Area’ (see further 5. How to use codepoints from the Private Use Area).

The Unicode Standard recommends naming conventions which must be followed strictly where the intention is
to annotate an existing Unicode character, and which should also be used as a model when creating new names
for characters or glyphs. For convenience of processing, the following distinct elements are proposed for naming
characters and glyphs:

• <charName>contains the name of a character, expressed following Unicode conventions.

No attributes other than those globally available (see definition for tei.global.attributes)

2

2.1 Character Properties

• <glyphName>contains the name of a glyph, expressed following Unicode conventions.

No attributes other than those globally available (see definition for tei.global.attributes)

Within both<char> and<glyph> , the following elements are available:

•

• <charProp> provides a name and value for some property of the parent character or glyph.

No attributes other than those globally available (see definition for tei.global.attributes)

•

• <mapping> contains one or more characters which are related to the parent character or glyph in some
respect, as specified by the type attribute.

No attributes other than those globally available (see definition for tei.global.attributes)

•

•

Four of these elements (<gloss> , <desc> , <figure> and<remarks>) are defined by other TEI modules,
and their usage here is no different from their usage elsewhere. The<figure> element, however, is used here
only to link to an image of the character or glyph under discussion, or to contain a representation of it in SVG.
Several<figure> elements may be given, for example to provide images with different resolution, or in different
formats. Thetype attribute may be used to specify the type of image.

The<mapping> element is similar to the standard TEI<equiv> element. While the latter is used to express
correspondence relationships between TEI concepts or elements and those in other markup vocabularies, the
former is used to express any kind of relationship between the character or glyph under discussion and characters or
glyphs defined elsewhere. It may contain any Unicode character, or a<c> element linked to some other<char>
or <glyph> element, if, for example, the intention is to express an association between two non-standard
characters. The type of association is indicated by thetype attribute, which may take such values asexact
for exact equivalences,uppercase for uppercase equivalences,lowercase for lowercase equivalences,
standardized for standardized forms, andsimplified for simplified characters, etc., as in the following
example:

<charDesc>

<char id="aenl" ucs="U+E300">

<charName>LATIN LETTER ENLARGED SMALL A</charName>

<charProp>

<localName>entity</localName>

<value>aenl</value>

<mapping type="standardized">a</mapping>

</char>

</charDesc>

A more precise documentation of the properties of any character or glyph may be supplied using the generic
<charProp> element described in the next section. Despite its name, this element may be used for either
characters or glyphs.

2.1 Character Properties
The Unicode Standard documents ‘ideal’ characters, defined by reference to a number of properties (or attribute-
value pairs) which they are said to possess. For example, a lower case letter is said to have the valueLl for
the propertygeneral-category . The Standard distinguishes between normative properties (i.e. properties
which form part of the definition of a given character), and informative or additional properties which are purely
descriptive. It also allows for the addition of new properties, and (in some circumstances) alteration of the values
currently assigned to certain propertiesSee further Character Property Model

3

http://www.unicode.org/reports/tr23/

The <charProp> element allows encoder to supply information about a character or glyph. Where the
information concerned relates to a property which has already been identified in The Unicode Standard, encoders
are urged to use the appropriate Unicode name.

The following elements are used to record character properties:

• <unicodeName>contains the name of a registered Unicode normative or informative property.

No attributes other than those globally available (see definition for tei.global.attributes)

• <localName>contains a locally defined name for some property.

No attributes other than those globally available (see definition for tei.global.attributes)

• <value>contains a single value for some property, attribute, or other analysis.

No attributes other than those globally available (see definition for tei.global.attributes)

For each property, the encoder must supply either a<unicodeName> or a <localName> , followed by a
<value> .

We list here some of the more significant normative character properties which may be provided. More information
about the normative character properties in Unicode can be found at The Unicode Standard, Version 3.0, Addison
and Wesley , p. 73, Table 4-1).

general-category The general category (described in The Unicode Standard 4.5) is an assignment to some major
classes and subclasses of characters. Some typical values for this property are listed here:

Lo Letter, other

Ll Letter, lowercase

canonical-combining-classThis property exists for characters that are not used independently, but in combina-
tion with other characters. It records a class for these characters, which is used to determine how character
interact typographically. For more information, see The Unicode Standard 4.2

directional-category All Unicode characters possess a directional type, which governs the application of the
algorithm for bi-directional behaviour.

character-decomposition-mappingThis is used to determine the relationship to other character(s). The Unicode
Standard contains a list of tags used for this purpose.

numeric-value The numeric value (in decimal notation) of a character that expresses any kind of numeric value.

mirrored The mirrored character property is used to properly render characters such as U+0028,OPENING
PARENTHESISindependent of the text direction.

The Unicode Standard also defines a set of informative (but non-normative) properties for Unicode characters. If
encoders want to provide such properties, they may be included using the suggested Unicode name.

Any Unicode-defined property must be named using the<unicodeName> element. However, encoders may
also supply any locally-defined properties, which must be named using the<localName> element to distinguish
them. These properties do not parallel properties given in the The Unicode Standard.

3 Annotating characters
Annotation of characters is necessary when a distinction based on only some aspects of a character (such as its
graphical appearance) is desired. In a manuscript, for example, where distinctly different forms of the letter "r" can
be recognized, it might be useful to distinguish them for analytic purposes, quite distinct from the need to provide
a accurate representation of the page. A digital facsimile, particularly one linked to a transcribed and encoded
version of the text, will always provide a superior visual representation, but cannot be used to support arguments
based on the distribution of such different forms. Character annotation as described here provides a solution to
this problem. It should be kept in mind that any kind of text encoding is an abstraction and interpretation of the
text at hand and will not be useful in reproducing an exact facsimile of a manuscript.,

We begin by defining two distinct<glyph> elements, one for each of the forms of the letter we wish to
distinguish:

4

3 Annotating characters

<charDesc>

<glyph id="r1">

<glyphName>LATIN SMALL LETTER R WITH ONE FUNNY STROKES</glyphName>

<charProp>

<localName>entity</localName>

<value>r1</value>

</charProp>

<figure url="r1img.png"/>

</glyph>

<glyph id="r2">

<glyphName>LATIN SMALL LETTER R WITH TWO FUNNY STROKES</glyphName>

<charProp>

<localName>entity</localName>

<value>r2</value>

</charProp>

<figure url="r2img.png"/>

</glyph>

</charDesc>

With these definitions in place, occurrences of these two special "r"s in the text can be annotated using the element
<c> :

<p>Wo<c ref="#r1">r</c>ds in this

manusc<c ref="#r2">r</c>ipt are sometimes

written in a funny way.</p>

As can be seen in this example, the<glyph> element pointed to from the<c> element will be interpreted as an
annotation on the content of the element<c> . This mechanism can also be used to indicate ligatures, as in the
following example:

<p> ... <c ref="#Filig">Fi</c>lthy riches...</p>

<!- in the chardesc ->

<glyph id="Filig">

<glyphName>LATIN UPPER F AND LATIN LOWER L LIGATURE</glyphName>

<figure url="Filig.png"/>

</glyph>

The same technique might be used to represent particular abbreviation marks, within the scope of an<abbr>
element, as in the following example:

<!- to be supplied ->

With this markup in place, it will be possible to write programs to analyze the distribution of the different letters
"r" as well as produce more ‘faithful’ renderings of the original. It will also be possible to produce normalized
versions by simple ignoring the annotation pointed to by the element<c> .

For brevity of encoding, it may be preferred to pre-define internal entities such as the following:

<!ENTITY r1 ’<c ref="#r1">r</c>’ >

<!ENTITY r2 ’<c ref="#r2">r</c>’ >

5

which would enable the same material to be encoded as follows:

<p>Wo&r1;ds in this manusc&r2;ipt are

sometimes written in a funny way.</p>

Since this mechanism employs markup objects to provide a link between a character in the document and some
annotation on that character, it cannot be used in places where such markup constructs are not allowed, e.g. in
attribute values.

4 Adding new characters
The creation of additional characters for use in text encoding is similar to the annotation of an existing character.
The same element<c> is used to provide a link from the character instance in the text to the character definition
in <charDesc> element. The main difference is that the<c> element now points to a<char> element.
The element<c> could however also hold a codepoint from the Private Use Area (PUA) of The Unicode
Standard, which is an area set aside for the very purpose of privately adding new characters to a document.
Recommendations on how to assign such PUA characters are given in the following section.

Under certain circumstances, Han characters can be written within a circle. While this could be considered simply
a facet of the rendering, it can also be considered a new, derived character, which will be in many ways similar to
the original, non-circled character, but has a distinct rendering. The following example will provide the necessary
markup to encode such an encircled character.

<char id="U4EBA-circled" ucs="U+E000">

<charName>CIRCLED IDEOGRAPH</charName>

<charProp>

<unicodeName>character-decomposition-mapping</unicodeName>

<value>circle</value>

</charProp>

<charProp>

<localName>daikanwa</localName>

<value>36</value>

</charProp>

<mapping type="standard">

<c ref="U4EBA">人</c>

</mapping>

</char>

5 How to use codepoints from the Private Use Area
The developers of the Universal Character Set have set aside an area of the codespace for the private use of software
vendors, user groups or individuals. As of this writing (Unicode 4.0), there are around 137,000 codepoints
available in this area, which should be enough for most needs. No codepoint assignments will be made to this area
by standard bodies and only some very basic default properties have been assigned (which will be overwritten
where necessary by the mechanism outlined in this chapter). Therefore, in contrast to all other codepoints of the
UCS, PUA codepoints should not be used directly in documents intended for blind interchange. Instead of using
PUA codepoints directly in the document content, entity references should be used. This will make it easier for
receiving parties to find out what PUA characters are used in a document and where possible codepoint clashes
with local use on the receiving side occurs.

To give a concrete example, the third variant of the letter r,&r3; in the above example might in the local
processing environment be more conveniently assigned a codepoint from the PUA, (say, U+E000), perhaps to
facilitate the use of a particular font which displays the desired character at this codepoint. Since this assignment
would be valid only on the local site, texts containing such codepoints are not suitable for blind interchange.
During the process of preparing these texts for interchange, such PUA codepoints should be changed either to an
encoding such as<c ref="#r2"> or to an entity reference such as&r2; , either of which will reference an
explicitly defined<char> element. The PUA character used during the preparation of the document could be
recorded as value of theucs attribute, as shown in the example in 4. Adding new characters. Upon receipt on
some other site, these could then again be transformed to characters from the PUA. If, as might well be the case,

6

6 Additional module defined by this section

this other site has already made an assignment of some other character to the codepoint U+E000, it would need to
represent the variant letter to some different and hitherto unused codepoint (say, U+E080).

This mechanism is rather weak in cases where DOM trees or parsed XML fragments are exchanged, which might
be increasingly the case. The best an application can do here is to treat any occurrence of a PUA character only in
the context of the local document and use the properties provided through the<char> element as a handle to the
character in other contexts.

In the fullness of time, a character may become standardized, and thus assigned a specific code point outside the
PUA. Documents which have been encoded using the mechanism must at the least change the value of theucs
attribute on the relevant<char> element to indicate the new correct codepoint. They may also be modified to
replace all occurrences of<c> elements which reference this<char> element by occurrences of the specific
coded character.

6 Additional module defined by this section
The elements described in this section are declared in a module calledwsd-ng which has the following formal
declaration:

<!– : Character and Glyph documentation–>

namespace local = ""

datatype.ucs = text

namespace local = ""

c = element c c.content

c.content = c.attributes, text

c.attributes =

tei.global.attributes,

attribute ref text ?,

[:defaultValue = "c"] attribute TEIform text ?

namespace local = ""

char = element char char.content

char.content =

char.attributes,

(charName, gloss?, charProp*, desc?, mapping*, figure*, note?)

char.attributes =

tei.global.attributes,

attribute ucs datatype.ucs ?,

[:defaultValue = "char"] attribute TEIform text ?

namespace local = ""

charName = element charName charName.content

charName.content = charName.attributes, text

charName.attributes =

tei.global.attributes,

[:defaultValue = "charName"] attribute TEIform text ?

7

ref-C.html
ref-CHAR.html
ref-CHARNAME.html
ref-CHARPROP.html
ref-MAPPING.html
ref-datatype.ucs.html
ref-CHARNAME.html

namespace local = ""

charProp = element charProp charProp.content

charProp.content = charProp.attributes, ((unicodeName | localName
), value)

charProp.attributes =

tei.global.attributes,

[:defaultValue = "charProp"] attribute TEIform text ?

namespace local = ""

charDesc = element charDesc charDesc.content

charDesc.content = charDesc.attributes, (desc?, (char | glyph)+
)

charDesc.attributes =

tei.global.attributes,

[:defaultValue = "charDesc"] attribute TEIform text ?

namespace local = ""

glyph = element glyph glyph.content

glyph.content =

glyph.attributes,

(name, gloss?, charProp*, desc?, mapping*, figure*, note?)

glyph.attributes =

tei.global.attributes,

attribute ucs datatype.ucs ?,

[:defaultValue = "glyph"] attribute TEIform text ?

namespace local = ""

glyphName = element glyphName glyphName.content

glyphName.content = glyphName.attributes, text

glyphName.attributes =

tei.global.attributes,

[:defaultValue = "glyphName"] attribute TEIform text ?

namespace local = ""

localName = element localName localName.content

localName.content = localName.attributes, text

localName.attributes =

tei.global.attributes,

[:defaultValue = "localName"] attribute TEIform text ?

8

ref-CHARPROP.html
ref-UNICODENAME.html
ref-LOCALNAME.html
ref-VALUE.html
ref-CHARDESC.html
ref-CHAR.html
ref-GLYPH.html
ref-GLYPH.html
ref-CHARPROP.html
ref-MAPPING.html
ref-datatype.ucs.html
ref-GLYPHNAME.html
ref-LOCALNAME.html

7 Reference section

namespace local = ""

mapping = element mapping mapping.content

mapping.content = mapping.attributes, ((text | c)*)

mapping.attributes =

tei.global.attributes,

[:defaultValue = "mapping"] attribute TEIform text ?

namespace local = ""

unicodeName = element unicodeName unicodeName.content

unicodeName.content = unicodeName.attributes, text

unicodeName.attributes =

tei.global.attributes,

[:defaultValue = "unicodeName"] attribute TEIform text ?

namespace local = ""

value = element value value.content

value.content = value.attributes, text

value.attributes =

tei.global.attributes,

[:defaultValue = "value"] attribute TEIform text ?

<!– end of –>

7 Reference section
[datatype.ucs]

datatype.ucs (Unicode Codepoint) Any legal Unicode codepoint, expressed as four hexadecimal
digits prefixed by the charactersU+.

Declaration

namespace local = ""

datatype.ucs = text

Module [wsd-ng]

[<c>]

<c> (character) represents a character.
Module [wsd-ng]
May contain
May occur within
Declaration

namespace local = ""

element c text, tei.global.attributes, attribute
ref text ?

9

ref-MAPPING.html
ref-C.html
ref-UNICODENAME.html
ref-VALUE.html
ref-datatype.ucs.html
ref-C.html

Attributes (In addition to global attributes)
ref identifies the character or glyph description intended.

Datatype:
Example

<c ref="#flig">fl</c>

Note Should only contain a single character or a character entity that represents a single
character.

[<char>]

<char> (character) provides descriptive information about a character which is not otherwise available in
the document character set.

Module [wsd-ng]
May con-
tain
May
occur
within
Declaration

namespace local = ""

element char

(charName, gloss?, charProp*, desc?, mapping*, figure*,
note?),

tei.global.attributes,

attribute ucs datatype.ucs ?

Attributes (In addition to global attributes)
ucs specifies the codepoint used for this character in the current document.

Datatype:datatype.ucs
Example

<char id="U4EBA-circled" ucs="U+4EBA">

<charName>CIRCLED IDEOGRAPH 4EBA</charName>

<charProp>

<unicodeName>character-decomposition-mapping</unicodeName>

<value>circle</value>

</charProp>

<charProp>

<localName>daikanwa</localName>

<value>36</value>

</charProp>

<mapping type="standard">

<c ref="U4EBA">[U+4EBA]</c>

</mapping>

</char>

[<charName>]

10

ref-.html
ref-CHAR.html
ref-CHARNAME.html
ref-CHARPROP.html
ref-MAPPING.html
ref-datatype.ucs.html
ref-datatype.ucs.html
ref-CHARNAME.html

7 Reference section

<charName> (character name) contains the name of a character, expressed following Unicode
conventions.

Module [wsd-ng]
May contain
May occur within
Declaration

namespace local = ""

element charName text, tei.global.attributes

Attributes Global attributes only
Example

<charName>CIRCLED IDEOGRAPH 4EBA</charName>

Note The name must follow Unicode conventions for character naming. Projects work-
ing in similar fields are recommended to coordinate and publish their list of
<charName> s to facilitate data exchange.

[<charProp>]

<charProp> (character property) provides a name and value for some property of the parent character or
glyph.

Module [wsd-ng]
May contain
May occur
within
Declaration

namespace local = ""

element charProp

((unicodeName | localName), value),

tei.global.attributes

Attributes Global attributes only
Example

<charProp>

<unicodeName>character-decomposition-mapping</unicodeName>

<value>circle</value>

</charProp>

<charProp>

<localName>daikanwa</localName>

<value>36</value>

</charProp>

Note If the property is a Unicode Normative Property, then its<unicodeName> must be
supplied. Otherwise, its name must be specied by means of a<localname> .At a later
release, additional constraints will be defined on possible value/name combinations using
Schematron rules

[<charDesc>]

11

ref-CHARPROP.html
ref-UNICODENAME.html
ref-LOCALNAME.html
ref-VALUE.html
ref-CHARDESC.html

<charDesc> (character description) provides descriptive information about characters or glyphs
additional to that implied by the current document character set.

Module [wsd-ng]
May contain
May occur within
Declaration

namespace local = ""

element charDesc (desc?, (char | glyph)+
), tei.global.attributes

Attributes Global attributes only
Example

[<glyph>]

<glyph> (character glyph) provides descriptive information about a character glyph which is not other-
wise available in the document character set.

Module [wsd-ng]
May
contain
May occur
within
Declaration

namespace local = ""

element glyph

(name, gloss?, charProp*, desc?, mapping*, figure*,
note?),

tei.global.attributes,

attribute ucs datatype.ucs ?

Attributes (In addition to global attributes)
ucs specifies the codepoint used for this glyph in the current document.

Datatype:datatype.ucs
Example

<glyph id="r1">

<name>LATIN SMALL LETTER R WITH A FUNNY STROKE</name>

<charProp>

<localName>entity</localName>

<value>r1</value>

</charProp>

<figure url="glyph-r1.png"></figure>

</glyph>

[<glyphName>]

<glyphName> (character glyph name) contains the name of a glyph, expressed following Unicode
conventions.

12

ref-CHAR.html
ref-GLYPH.html
ref-GLYPH.html
ref-CHARPROP.html
ref-MAPPING.html
ref-datatype.ucs.html
ref-datatype.ucs.html
ref-GLYPHNAME.html

7 Reference section

Module [wsd-ng]
May contain
May occur within
Declaration

namespace local = ""

element glyphName text, tei.global.attributes

Attributes Global attributes only
Example

<glyphName>CIRCLED IDEOGRAPH 4EBA</glyphName>

Note For characters of non-ideographic scripts, a name following the conventions for Unicode
names should be chosen. For ideographic scripts, an Ideographic Description Sequence
(IDS) as described in Chapter 10.1 of The Unicode Standard is recommended where
possible. Projects working in similar fields are recommended to coordinate and publish
their list of<glyphName> s to facilitate data exchange.

[<localName>]

<localName> (Locally-defined Property Name) contains a locally defined name for some property.
Module [wsd-ng]
May contain
May occur within
Declaration

namespace local = ""

element localName text, tei.global.attributes

Attributes Global attributes only
Example

<localName>daikanwa</localName>

<localName>entity</localName>

Note No definitive list of local names is proposed. However, the nameentity is
recommended as a means of naming the property identifying the recommended
character entity name for this character or glyph.

[<mapping>]

<mapping> (character mapping) contains one or more characters which are related to the parent character
or glyph in some respect, as specified by thetype attribute.

Module [wsd-ng]
May contain
May occur
within
Declaration

namespace local = ""

element mapping ((text | c)*),
tei.global.attributes

13

ref-LOCALNAME.html
ref-MAPPING.html
ref-C.html

Attributes Global attributes only
Example

<mapping type="modern">r</mapping>

<mapping type="standard">

<c ref="U4EBA">[U+4EBA]</c>

</mapping>

Note Suggested values for thetype attribute includeexact for exact equivalences,uppercase
for uppercase equivalences,lowercase for lowercase equivalences, andsimplified for
simplified characters. The<c> elements contained by this element can point to either another
<char> or <glyph> element or contain a character that is intended to be the target of this
mapping.

[<unicodeName>]

<unicodeName> (Unicode Property Name) contains the name of a registered Unicode normative or
informative property.

Module [wsd-ng]
May contain
May occur within
Declaration

namespace local = ""

element unicodeName text,
tei.global.attributes

Attributes Global attributes only
Example

<unicodeName>character-decomposition-mapping</unicodeName>

<unicodeName>general-category</unicodeName>

Note A definitive list of current Unicode property names is provided in The Unicode
Standard.

[<value>]

<value> (value) contains a single value for some property, attribute, or other analysis.
Module [wsd-ng]
May contain
May occur within
Declaration

namespace local = ""

element value text, tei.global.attributes

Example

<value>unknown</value>

14

ref-UNICODENAME.html
ref-VALUE.html

	Overview
	Markup constructs for representing non-standard characters
	Character Properties

	Annotating characters
	Adding new characters
	How to use codepoints from the Private Use Area
	Additional module defined by this section
	Reference section

