
This page intentionally left blank.

Graduate Institute of Applied Linguistics

Thesis Approval Sheet

This thesis, entitled

DESIGN OF AN ELECTRONIC METHOD FOR DESCRIBING WRITING SYSTEMS

written by

Eric Scott Albright

and submitted in partial fulfillment of the requirements for the degree of

Master of Arts in Applied Linguistics

has been read and approved

by the undersigned members of the faculty

of the Graduate Institute of Applied Linguistics

Gary F. Simons (Mentor)

Stephen L. Walter

Robert B. Reed

May 11, 2001

DESIGN OF AN ELECTRONIC METHOD FOR DESCRIBING WRITING SYSTEMS

By

Eric Scott Albright

Presented to the Faculty of
the Graduate Institute of Applied Linguistics

in partial fulfillment of the requirements
for the degree of

Master of Arts in Applied Linguistics

Graduate Institute of Applied Linguistics
June, 2001
Dallas, TX

Copyright © 2001 Eric Scott Albright
All Rights Reserved

THESIS DUPLICATION RELEASE

I hereby authorize the Graduate Institute of Applied Linguistics Library to duplicate this
thesis when needed for research and/or scholarship.

Agreed:
(student signature)

Refused:
(student signature)

ABSTRACT

DESIGN OF AN ELECTRONIC METHOD FOR DESCRIBING WRITING SYSTEMS

Eric Scott Albright, M.A.

The Graduate Institute of Applied Linguistics, 2001

Supervising Professor: Gary F. Simons, Ph.D.

Although descriptions of writing systems abound, the literature conspicuously lacks a

reference work that describes the information that should be present for a complete account

of the workings of a writing system. As a result, the quality of writing system descriptions

suffers, as key information is either lacking or inaccessible.

Writing system descriptions must describe the characteristics of each unit of writing

together with its relationships to other pertinent units of writing and linguistics. Formal

descriptions allow both machines and users to share the same source of information.

This thesis seeks to determine the slots that should be filled by information obtained

from the systematic analysis of writing systems. These slots are organized into a formal

model of writing system descriptions that captures the semantics of writing systems.

DEDICATION

In memory of Kenneth L. Pike who sat on the front porch of a teenager and

convinced him that there is nothing in the world like the study of linguistics—especially

when your wife is also a linguist.

To my linguist wife, who inspired, encouraged, and supported me during this study.

ACKNOWLEDGMENTS

This thesis would not be what it is today without the help of my mentor, Dr. Gary F.

Simons. His guidance, suggestions, and critique have been invaluable.

The other members of my committee, Dr. Stephen L. Walter and Dr. Robert B. Reed,

provided valuable editorial comments, which have greatly improved the quality of the final

product.

Martin Hosken was also a great help from the beginning, providing a sounding board

for my ideas and pouring over drafts with numerous comments.

May 11, 2001

vii

TABLE OF CONTENTS

1. Introduction..1
2. Review of the literature..5
2.1. Introduction...5
2.2. Theory of writing systems...7
2.2.1. Applying emic principles to writing systems...7
2.2.2. Informal contributions...12
2.2.3. Formal contributions..19
2.3. Descriptions of writing systems..21
2.3.1. Collections of writing system descriptions..22
2.3.2. Writing system descriptions for individual languages...25
2.4. Requirements for descriptions of writing systems..27
2.5. Computational models..28
2.6. Summary...32
3. The problem...33
3.1. Rationale for the study..33
3.2. Theoretical framework..35
3.3. Statement of the problem to be investigated...35
3.4. Elements to be investigated..35
3.5. Limitations of the study..36
3.6. Definition of terms..38
3.7. Summary...41
4. Background information..42
4.1. How a computer treats text...42
4.2. XML in a nutshell...45
5. Design requirements..49
5.1. General requirements..49
5.2. Specific requirements for writing systems..52
6. Elements of writing systems..53
6.1. Linguistic elements...53
6.2. Graphs...58
6.3. Graphemes..63
6.4. Writing system units...68
6.5. Classes..75
6.6. Computational units..78
6.6.1. Key codes...78
6.6.2. Coded units..80

viii

6.6.3. Glyphs..80
7. Relationships between writing system elements..82
7.1. Potential relationships...82
7.2. Mappings..87
7.3. Relations...98
7.4. Collating sequence..99
8. From formalism to publication..109
8.1. Elements needed for publication...109
8.1.1. Language..109
8.1.2. Author..110
8.1.3. Prose sections...110
8.2. Rendering the publication...113
8.3. Implementation of example...115
9. Conclusions..116
9.1. The best descriptions..116
9.2. Results...117
9.3. Wider implications..117
9.4. Recommendations...117
A. Electronic writing system description document type definition......................................119
B. Electronic writing system description example...127
C. Electronic writing system description stylesheet...133
Bibliography..149

ix

LIST OF FIGURES

Figure 1 Simple computational unit mappings..43
Figure 2 Complex computational unit mapping...44
Figure 3 An XML element delimiting a span of text...45
Figure 4 An XML element hierarchy...46
Figure 5 Nested XML elements of the same type..46
Figure 6 An XML element with mixed content...46
Figure 7 Secondary information as an XML element..47
Figure 8 Secondary information as an XML attribute...47
Figure 9 Dutch phonological derivation levels for ��������������...55
Figure 10 Simple formal instance of linguistic unit...56
Figure 11 Complex formal instance of linguistic unit...56
Figure 12 Formal instance of syllable as linguistic unit...56
Figure 13 Formal instance of syllable treated as a sequence of phonemes..............................57
Figure 14 Formal instance of morpheme as linguistic unit..57
Figure 15 Formal instance of morpheme treated as a sequence of phonemes..........................57
Figure 16 Formal instance of intermediate level as linguistic unit..58
Figure 17 Graph stroke patterns for Burmese top indented ba..61
Figure 18 English names of graphs..62
Figure 19 Portuguese names of graphs..62
Figure 20 Formal instance of Burmese graph declaration..63
Figure 21 Rules for Greek sigma including grapheme..65
Figure 22 Rules for Greek sigma omitting grapheme..66
Figure 23 Formal instance of grapheme declaration..67
Figure 24 Formal instance of word writing unit declaration..69
Figure 25 Formal instance of catenation declarations..70
Figure 26 Formal declarations of Chinese writing units..71
Figure 27 Formal instance of Korean writing unit declarations...73
Figure 28 Formal instance of Korean writing unit declarations...74
Figure 29 Formal instance of class declarations for case...76
Figure 30 Formal instance of class declarations including other classes.................................76
Figure 31 Formal instance of class declarations excluding other classes.................................77
Figure 32 Formal instance of contextually determined class membership...............................78
Figure 33 Formal instance of key code declaration..79
Figure 34 Formal instance of coded unit declaration...80
Figure 35 Formal instance of glyph declaration...81
Figure 36 Linguistic relationships...82

x

Figure 37 Linguistic relationships including graphemes...83
Figure 38 Computational relationships..83
Figure 39 Computational implementation of writing...84
Figure 40 Minimal set of linguistic and computational relationships......................................85
Figure 41 Precedence of correspondence rules..90
Figure 42 Precedence of correspondence rules with environments...90
Figure 43 Sigma correspondence rule..92
Figure 44 Formal sigma correspondence rule..93
Figure 45 Formal instance of an optional sequence...94
Figure 46 Formal instance of a repeatable choice..94
Figure 47 English graph to sound correspondence rule...95
Figure 48 Formal equivalent of English graph to sound correspondence rule.........................95
Figure 49 French correspondence rule referencing grammatical information.........................96
Figure 50 Formal equivalent of French correspondence rule...96
Figure 51 Formal instance of simple correspondence rule...97
Figure 52 Formal instance of correspondence rule with context...97
Figure 53 Formal instance of correspondence rule..98
Figure 54 Case relation rules...99
Figure 55 Simple collation sequence...100
Figure 56 Words in alphabetical order separated by case..100
Figure 57 Words in alphabetical order with case as second level..100
Figure 58 Levels of sorting keys..101
Figure 59 Collation tree...101
Figure 60 Formal collation tree..102
Figure 61 Level precedence in a collation tree...103
Figure 62 Collating tree for French..104
Figure 63 Formal collating tree for French..104
Figure 64 Ignorable characters...105
Figure 65 Collating tree with ignored characters...105
Figure 66 Formal ignorable characters...106
Figure 67 Formal sort equivalencies..107
Figure 68 Katakana collation tree..108
Figure 69 Formal Katakana ordering rules..108
Figure 70 Formal instance of language identification..110
Figure 71 Formal instance of author..110
Figure 72 Introductory prose..112
Figure 73 Prose discussion of the formalism...113
Figure 74 Rendering of Fijian writing system description introduction................................114
Figure 75 Rendering of prose discussion...114

xi

LIST OF ABBREVIATIONS

AFIL..Association for Font Information Interchange
CETH..Center for Electronic Texts in the Humanities
Co...Company
CSLI...Center for the Study of Language and Information
DTD..Document Type Definition
HMM...Hidden Markov Model
HTML..Hyper Text Markup Language
IPA..International Phonetic Alphabet
ISO...International Organization for Standardization
LACUS...The Linguistic Association of Canada and the United States
ORL...Orthographically Relevant Level
PTGC...Phoneme-To-Grapheme Conversion
SGML..Standard Generalized Markup Language
SIL...Summer Institute of Linguistics
SIL-AAB...................................Summer Institute of Linguistics Australian Aborigines Branch
TEI..Text Encoding Initiative
UCS..Universal Character Set
WSD..Writing System Declaration
XML...Extensible Markup Language
XSLT..XML Stylesheet Language for Transformations

xii

Chapter 1: Introduction

Despite the numerous works actually describing writing systems, the literature

conspicuously lacks discussion about the process of describing writing systems.

Consequently, many of the writing system descriptions available today lack key information,

leaving many questions unanswered.

The descriptions of writing systems have simply not received the attention that other

areas of linguistics have enjoyed. For example, Pike (1947) in his book Phonemics included

two chapters dedicated to the procedure involved in describing sound systems. Nevertheless,

the reasons he gave for including this discussion about descriptions apply to writing systems

just as they do to sound systems:

• The analysis “will be available to other persons” (page 174)

• “A person can come into a study of a strange language and learn it more

rapidly” (page 174)

• “Students of linguistics in general also need to have precise, accurate,

and detailed descriptions of the sound systems of all languages. They

wish to make general studies of the types of structural relationships

which are found around the world, in the hope of discovering various

language characteristics of a universal nature which will increase their

understanding of basic language types. For this purpose they need

1

statements about the large number of languages of which there are as yet

no technical materials available” (page 174).

• “For the investigator himself it is important that he prepare a written

statement of the phonemic data. This helps (1) to clarify his ideas, (2) to

check the completeness of his materials, [and] (3) to assemble evidences

which help him reach …[his] conclusions…” (page 174)

This lack of a framework and the corresponding lack of complete writing system

descriptions leads to a further problem, the problem of multilingual computing where a wide

variety of writing systems must be supported on an electronic system.

The advent of the computer, ushering in the current information age, has brought the

ability to create, store, and manipulate large amounts of information. Much of this

information is textual in nature, representing writing from numerous languages. But each

language is different, and each language is written differently. The Internet has made it easy

to share information with a global audience. However, with this global audience comes the

global diversity of languages and writing systems.

As texts in a diversity of languages are created, shared, and archived electronically,

the need to describe the writing systems used by these texts becomes readily apparent. How

can one know what is represented by the graphic symbols used in a text? Or how can various

computer processes “know” how to treat a string of characters in a little known language?

There is much information that one needs to know to be able to understand a writing

system. What are the properties and interrelationships of the characters (the atomic units of

writing systems)? What linguistic elements are expressed in graphic form? How are the

sounds (or other linguistic elements) expressed in the writing system? What are their names?

2

Are there special contexts that determine variant graphic forms of the same character? What

is the order into which the characters are conventionally arranged?

In addition, the computer must be able to recognize the characters from electronic

storage and take in their properties. It must be able to sort character strings. If it is to insert

hyphenation points or check the spelling or grammar of a text, it must be able to identify

syllables, words, and sentences. If it is to perform searches for abstract patterns, it must be

able to determine whether a given character is a member of a given class of characters. In

order for a computerized process to intelligently interact with someone concerning a writing

system, the machine must share the same knowledge as the user.

For most computerized processes that rely on writing system information, that

information is “hard coded” into the application code. This means that the writing system

information cannot be changed or extended to add support for a new writing system without

changing the code and creating a new version of the program. An example of this is found

readily when a language uses the apostrophe character ��������� to represent the glottal stop. In such

languages, the apostrophe should be treated as a letter of the same standing as ��������� or ��������� or

any other letter. However, when performing a pattern based search in Microsoft Word, ��������� is

not included among the letters.

When writing system information is treated as input data, processes that involve

writing systems information can be generalized to work with any language. If Microsoft

Word retrieved writing system information from a source which the user could modify, the

user could add ��������� as a letter and the aforementioned search would behave as expected.

This thesis presents a model for writing system descriptions that captures this type of

information and can be used by both humans and computers. It is motivated by theory from

3

the study of writing systems and informed by what is actually attested in existing writing

system descriptions.

This model is designed to be functional, that is, it is designed to be useful. Some

linguists have recently begun to question the utility of the products of linguistic research: “To

what extent do linguists’ descriptions serve ‘consumers’ in domains beyond the discipline of

linguistics?” (Butt 1996:xv–xvi) The intent of this research is to create a model that will

serve not only linguists, but extend into a number of complementary domains.

This thesis has a dual audience and a dual approach. First, this work is aimed toward

researchers who want to describe the writing systems of the world, providing the groundwork

for a repository of electronic writing system descriptions such as would be needed for the

proper documentation of archived electronic texts. Second, it is aimed at computer

programmers who want to write generalized software that is truly multilingual and extensible.

4

Chapter 2: Review of the literature

2.1 Introduction

As previously mentioned, the literature lacks any thorough work on the process of

describing writing systems. However, literature does exist which provides insights into the

problems faced in writing system analysis and description as well as into the requirements of

such a system. This chapter surveys the pertinent literature on the study of writing systems,

making special note of the insights that may affect the description of writing systems.

People have long been fascinated by the diversity and beauty inherent in the scripts

used in writing. Campbell, in the introduction to his Handbook of Scripts & Alphabets as a

companion volume to his Compendium of the World’s Languages wrote that “the intrinsic

interest of the scripts themselves seems to justify their separate publication” (1997:vii).

Daniels (1996) provides a thorough history of the study of writing systems, beginning

with the earliest civilizations when “writing systems themselves were overlooked, or looked

right through” (page 5) and tracing the development of the interest in writing system study.

In the seventeenth century, journals began to carry reports from “explorers and missionaries

about the languages and scripts they were encountering” (page 6). However, it was not until

1883 that Isaac Taylor would publish the “first book on writing from a scientific

perspective” (Daniels 1996:6).

5

The modern study of writing has primarily attempted to address two questions: (1)

how did writing and the many scripts of the world develop? and (2) how does writing

represent speech?

The first question involves the historical development of writing systems. Most

works of this nature provide many specimens of various types of writing and attempt to trace

the spread of writing or the lineage of particular systems of writing. Diringer’s The Alphabet

(1968) is perhaps the best-known work of this type.

The second question involves the linguistic study of writing systems. Historically, the

primary focus of linguistics has been devoted to spoken language to the neglect of writing

and written language. “Writing systems per se … have absorbed the attention of only a very

few linguists” (Daniels and Bright 1996:1). However, Sampson rightly observed that the

system of writing needs to be described just as any other system of language (1985:13).

Despite the dearth of literature on the subject, a number of definitive works on writing

systems have been produced by linguists.

Not only has the field of linguistics begun to study writing systems, but other

disciplines such as literacy and reading, computer science, and psycholinguistics have also

produced works, which include substantial discussion of writing systems. Thus, the study of

writing systems has been quite eclectic, receiving attention from numerous perspectives. The

following pages provide an overview of the major contribution of that literature.

6

2.2 Theory of writing systems

The linguistic theory of writing systems began with an attempt to apply emic1

principles to writing systems and to analyze writing in a similar fashion to phonology or

grammar.

More recently, several unified theories of writing systems have been proposed.

Informal approaches to explain the general methods by which language is represented in

writing have been written by Gelb (1963), Sampson (1985), Coulmas (1989), and DeFrancis

(1989). Sproat (2000), on the other hand, offers the only general formal approach to the study

of writing systems. These and other contributions to the theoretical literature are introduced

in the following sections.

2.2.1 Applying emic principles to writing systems

Much of the early work concerning writing systems attempts to answer the question

of what are the significant units of writing. Significant units of writing must be described,

while insignificant aspects may be ignored.

Pike (1947) approached the problem of writing systems from the perspective of the

formation of new orthographies and thus established the goal of a “one-to-one

1 The terms etic and emic were coined by Kenneth Pike (by removing phon from the
terms phonetic and phonemic) to indicate the perceptual distinctions between observed
data. Thus, emic entities are “seen as ‘same’ from the perspective of the internal logic of
the containing system, as if it were unchanging even when the outside analyst easily
perceives that change” (Pike 1982:xii), and etic entities are seen as “different” from the
perspective of an outside analyst. When these two perspectives are correlated, the etic
units can be seen to correspond to the emic units such that the etic units are simply
conditioned variants of the emic unit. The etic units are the ones that initially matter to
the outside analyst and are generally imperceptible to the users. The emic units matter to
the insiders. They may or may not be perceptible to the outside analyst.

7

correspondence between each phoneme and the symbolization of that phoneme” (1947:208)

for the development of practical orthographies.2 His chapter on that topic is naturally

oriented from the perspective of the sound system rather than the writing system. This work

and its contribution to phonemic theory has been foundational to the design of many new

orthographies3 since its publication.

For Pike there is one significant unit of writing for each phoneme.4 Such treatment

tends to be appropriate for the design of writing systems and for the description of recently

designed writing systems. However, it is not able to deal with the actual state of many older

writing systems. It is well known that spoken language tends to change much faster than its

written counterpart, and thus, writing systems with long histories tend to require a more

sophisticated analysis of the relationship between the sound system and the writing system.

Pulgram and Bazell were some of the first to apply emic principles to the study of

writing systems. They attempted to find parallels with other emic units: phonemes and

morphemes, respectively. Pulgram (1951) thought that the variations present in writing a

single letter were similar to variations present in the speech sounds of a language. He posited

that “graphemes,” the underlying form of these variants, were similar to phonemes.

Pulgram lists the following characteristics of “graphemes” (1951:15–16):

• The smallest distinctive visual units of an alphabet are its graphemes.

2 He did not preclude the use of syllabaries which “have a one-to-one correspondence
between each syllable and the symbol representing it” (Pike 1947:208).

3 These are orthographies which are phoneme based, that is, which seek to make as
simple a correspondence between the graphs and the phonemes as possible.

4 When the system of writing is based on the syllable, there is one significant unit of
writing for each syllable.

8

• A grapheme is a class of written characters pertaining to one alphabet.

• The hic et nunc written realization of a grapheme is a written alphabetic

character or graph.

• The number of graphemes in each alphabet must be limited, the number

of graphs cannot be.

• By definition, all graphs identifiable as members of one grapheme are its

allographs.

• The graphic shape of an allograph is dependent on its producer and on its

graphic surroundings.

• Graphs which are not immediately and correctly identifiable as belonging

to a certain grapheme when occurring in isolation, may be identified

through their meaningful position in a context.

• Alphabets are subject to graphemic change and substitution.

• The number, kind, and distribution of graphemes varies from alphabet to

alphabet.

Pulgram was concerned with accounting for variations present in the form of graphic

shapes. In doing so, he accounts for forms that vary given a particular context (such as word

initial, medial, or final forms). However, he also accounts for variants that are caused by the

production process, forms that are analogous with the variation of vocal quality in humans

due to differing physiology:

No matter how a person’s handwriting realizes the grapheme of, say, the Latin
alphabet, no matter what style or font a printer employs, each hic et nunc
realization of a grapheme, which may be called a graph, can be recognized as

9

belonging to a certain class and therefore deciphered by the reader. All graphs
so identifiable are allographs of a given grapheme. (1951:15)

Pulgram’s analysis centered on the human ability to recognize graphic forms with

numerous variations as alike because of the distinct features they share. This led him to a

perspective that is structural, that is, based on the form rather than the meaning that is

represented:

It appears that just as a phoneme may be interpreted as a bundle of
simultaneous distinctive features that are obligatory in every realization of the
phoneme (which is the reason why there is no freedom of choice for the
speaker as to what distinctive features to use, and why a single distinctive
feature is not a minimal emic unit), so the grapheme is composed either of the
various strokes and loops of letters, or of the patterns that make up the designs
of syllabic and ideographic symbols (also with an absence of choice for the
writer because of the necessary simultaneity and inclusiveness of all the
features, none of which by itself is an emic unit). (1965:212)

Although Pulgram divorces the units of writing from the language they represent, he

does specify that the significant units of writing are not the strokes or patterns that make up a

symbol. Beyond that, he does not specify how the significant unit of writing is identified.

Bazell (1956) in a similar structural vein likened the “grapheme” to the morpheme,

the minimal meaningful unit of grammar. He suggested that letters could be split into the

strokes by which they are formed and these strokes should be likened to phonemes:

By definition the phoneme cannot contain smaller distinctive features unless
these are simultaneous. The corresponding graphic unit should equally have
no smaller features except such as are spatially superimposed. But letters are
normally distinguished from each other by features (dots, curves etc.) located
in different positions, these positions themselves being relevant (e.g. b/d).
Hence it is, for instance, the bar and loop of b and d, not these whole letters,
that answer to phonemes. (pages 44–45)

10

Thus, Bazell seems to indicate that the individual strokes involved in writing are

significant units of writing. This naturally raises the question of what is meant by a

significant unit of writing; Bazell and Pulgram seem to have very different ideas.

The structural view of writing, which Pulgram and Bazell expose, highlights the

shapes of graphic forms, independent of the linguistic elements they represent. This

viewpoint has come under harsh criticism by Daniels in his paper entitled “Is a Structural

Graphemics Possible?” (1992). This eventually sparked debate between Daniels and Herrick

(Daniels 1995, Herrick 1995a, 1995b).

Daniels claimed that “the graphemics5 of a language should be described in terms of

the phonology of its language” (1995:426), while Herrick claimed that “the graphemics of a

language should be described on its own terms” (1995a:413). Daniels was concerned

primarily with how writing represents language while Herrick was concerned primarily with

how units of writing can be recognized by a reader.

Ultimately, Daniels disregards a structural analysis as not being useful (1995:430).

For him, the fact that writing represents language takes priority over the fact that a person

can recognize writing units. Therefore, he favors an analysis that highlights the linguistic

relationship:

The many scholars who accept as a given for some language some inventory
of characters of a script—for English, say, the letters of the alphabet—and
describe the relations between its sounds and their spellings … are, in my
opinion, doing what is necessary in the study of writing systems. (1995:426)

5 Graphemics is one attempt at a name for the study of writing systems. Another,
proposed by Gelb (1963), is grammatology, but “no name for this field of study has
even become widely accepted” (Daniels and Bright 1996:1).

11

Although there is still room for debate, the majority of writing system researchers

have chosen to describe writing in terms of its relationship to linguistic notions.

Gleason acknowledged that each of these perspectives could operate: “Not only does

a writing system have its own structure which can be studied, but there is also a set of

conventions of relationship between the writing system and certain structures (commonly

phonologic) in an associated spoken language” (1961:409).

While recognizing structural analyses, Hall also favored linguistic ones:

It is, in theory, possible to analyze graphemes purely in terms of the structure
of their visible shapes, identifying their graphic components such as vertical
strokes, horizontal strokes, curves, etc.… For our purposes, however, the only
useful analysis of a graphemic system is in terms of the symbolization it
affords to features of linguistic structure, i.e., in terms of its linguistic
meaning. (1964:266)

Thus, the significant units of writing when describing writing systems are those units

that correspond to some linguistic structure such as the phoneme. The strokes that make up

these significant units are themselves only important in terms of the production of the

significant units. This issue of what make up the significant units of writing is discussed

further in Section 6.2 and Section 6.3.

2.2.2 Informal contributions

Many of the theoretical works on writing systems are concerned with how writing

came about. This history of writing is of no use to the topic at hand. Some of these works did

deal with the relationship between writing and the linguistic structures of spoken language

and this is very much of use to us. Unfortunately, the contributions in this area are severely

12

limited. This section introduces the theoretical works on writing systems that are not of a

formal nature while highlighting the requirements that they impose on a framework for the

description of writing systems.

Gelb (1963) desired that his book, A Study of Writing, would “lay a foundation for a

full science of writing, yet to be written” (page 23). Daniels, one of Gelb’s students, calls this

book “the first linguistically sound theoretical study of writing systems” (1996:3). However,

in laying the foundation for a science of writing, Gelb failed to chart the course for such

study. “Unfortunately, Gelb’s attempt to lay the foundation for his ‘new science’ was a

failure, as is now generally recognized” (Harris 1995:1).

However, Gelb did provide a linguistically motivated definition for writing, namely

that writing is a “device for expressing linguistic elements by means of visible marks” (page

13). With this claim, that there exists a relationship between linguistic information and

graphic information, the stage was set for linguistic description of writing systems; a

description whereby these “visible marks” and their relationship to corresponding linguistic

elements, such as “phrases, words, syllables, single sounds, and prosodic features” (page 14),

could be made plain. However, Gelb was primarily concerned with tracing the development

of writing; 6 and he does not provide any insight into the nature of the relationship between

writing and language.

Hall, in a short article, attempted to “formulate and codify a comprehensive, unified

theory” (1960:13) of writing systems. He believed that the analysis of writing systems “rests,

basically, upon the recognition and establishment of significant units of visually perceived

6 This probably stems from the fact that he was “a specialist in the earliest stages of the
Semitic language Akkadian” (Daniels 1996:6).

13

form” (1960:13). He demonstrated that distinct types of linguistic information (phonemic,

morphophonemic, morphemic, semantic, and etymological) are represented by written

symbols and that these various types may be simultaneously represented within the same

writing system (1960:14). He also accounted for the fact that written symbols sometimes

represent arbitrary information, such as the case where the spelling of a word attempts to

convey etymological information that, in fact, is fallacious, such as “the French spelling of

legs ����	
���� ‘legacy’ with g, as if derived from léguer ‘bequeath’ instead of its actual source

laisser ‘leave’ ” (Hall 1960:16). Hall showed that the inventory of the linguistic elements that

can be represented by written units is quite diverse. A framework for describing writing

systems must be able to accommodate this simultaneous diversity.

Although Hill did not attempt a unified theory of writing systems, he proposed that

“writing systems can all be classified in terms of which units are recorded, and

how” (1967:93). He also makes an important claim that “all systems leave some of the

linguistic structure out of the record, since not all parts of linguistic structure are required for

unique identification” (1967:93). This indicates that a complete description of a writing

system may not be all that is required for some types of automated process, such as

automated text-to-speech processing. Grammatical, lexical, and phonological information

may additionally need to be described. A framework for writing system description must be

able to handle under-representation.

Herrick provides valuable information about the characteristics of the units of

alphabets (1974:10–11):

• Each letter has a name.

14

• A letter has a pronunciation.

• A letter has a place in the alphabetical order of its language.

• A letter, and every other grapheme, has a certain role in the

graphotactics7 of its language.

• A letter is embodied by marks which have a certain basic shape or a

certain few basic shapes.

These properties of letters should be included within the writing system description

framework.

Haas suggested that writing relates to language at many different levels but that each

writing system has one linguistic element that is the predominant unit represented by graphic

forms. “The unlimited number and variety of utterances… [are analyzed] in terms of a

limited inventory of recurrent units” (1983:16). These units are then assigned written

symbols. “The level of the underlying analysis determines the level of the script: the written

symbols represent words or morphemes or syllables or phonemes. It is the choice of one of

these that characterizes a script as being derived on a certain level” (1983:16). Thus,

although writing may represent a diversity of linguistic elements, one set tends to be

represented more thoroughly in a particular writing system. This set should be identifiable in

a framework for the description of writing systems.

Lamenting that “books on writing still tend to concentrate more on the physical

appearance of scripts than on analysis of the formal relationships between graphic

elements” (1985:12), Sampson was the first since Gelb to attempt a major work on writing

7 The graphotactics are “formulas which state the combinations of graphemes which may
occur in that language” (Herrick 1974:10)

15

systems. Sampson divided the study of writing systems into three fields: typology, history,

and psychology (page 15). He, like Gelb, extensively treated the history of the development

of writing. Additionally, he sought to determine a taxonomy of writing systems by

determining the principles used to reduce a given language to writing (page 15). Although he

described aspects of four writing systems in depth, he did not provide any theoretic

principles for how writing systems should be described.

Booij demonstrated from examples in Dutch that writing does not simply represent

the sounds of speech, but instead, “an orthographical system represents different levels of

language structure” (1987:215). He included linguistic units at intermediate derivational

levels as those that can correspond to written units. This adds all the intermediate levels into

the set of linguistic units that may need to be referenced in a writing system description.

Sgall attempted to “formulate the basic definitions that seem to be necessary for a

theoretical description of graphemic systems based on the phonemic principle” (1987:1). He

defines terms such as grapheme, protographeme, subgrapheme, epigrapheme, and alphabet

based on the alphabetic systems of Europe. However, his system does not work for the many

non-Roman writing systems and thus is not of use to a general framework designed for any

language and writing system.

Coulmas (1989) provided a major theoretical work on writing systems. He supplied

an important discussion about the relationship between the structures of language and the

structures of writing, claiming that writing systems are not only “based on analytical

perceptions”, but that they help to form these analytical perceptions and the “resulting

conceptualizations of the structural units of language” (page 40). He also claimed that terms

such as sentence, word, and possibly even phoneme, although used to describe spoken

16

language, find their origin not in the structure of spoken language but of written language

(pages 39–40). Thus, writing system descriptions should describe these larger units that have

their origin in the structure of written language. Coulmas supplies limited descriptions of

writing systems while tracing the development of writing. Like the others, he provides no

directions about how to describe a writing system other than to acknowledge that “writing

systems operate on different levels and emphasize different units of language” (1989:270).

DeFrancis (1989) argued convincingly against the prevailing view that many different

linguistic levels may be predominantly represented by a writing system. Instead, he claimed

that “the only writing systems that have ever been created, and … ever can be created, are

those that represent language on the syllabic or phonemic levels” (page 229). While

acknowledging that writing may represent other linguistic features, he claimed that other

linguistic levels would never constitute the predominant system of representation. DeFrancis

suggested the “Duality Principle,” which claims that writing systems may convey meaning by

either using “symbols which represent sounds and function as surrogates of speech,” or by

using “symbols that add nonphonetic information” (page 49). These two systems are applied

in proportion to each other such that “the poorer a writing system is in phonetic

representation, the more it compensates… by greater use of nonphonetic devices” (page 51).

DeFrancis suggested that “the key question to ask about writing systems is not the

ambiguous one of what they ‘represent’ but the more precise query as to what are the basic

units…that make the systems work” (page 56). Once these basic units are known, the

corresponding question of what they represent can be addressed and explained in terms of the

basic units:

17

In an alphabetic system of writing, since what is represented is phonemes, we
should start by asking how many phonemes there are, and what symbols are
used to represent them. In the case of English, we know that there are about
40 phonemes of various kinds (consonants, vowels, stress, pitch, and others).
We also know that there are 26 letters and a few other symbols available to
represent those 40 phonemes…in our writing system. (pages 230–231)

In a syllabic system of writing, since what is represented is syllables, we
should start by asking how many syllables there are, and what symbols are
used to represent them. In the case of Japanese, the answer is fairly clear,
despite some differences of opinion among specialists. There are 105 or 113
syllables and 46 syllabic symbols to represent them. (page 231)

DeFrancis lamented “the dearth of truly illuminating discussion of the relationship

between writing systems and the languages they represent” but cites Huttar’s description of

the Njuka language (Huttar 1987) as a “satisfying bit of scholarship” (page 237). Indeed, in

this short article, Huttar has concisely described the relationships between the Njuka

phonology and its representation in the Afaka syllabary, while raising linguistic issues of the

adequacy of the under-representation of the script.

Harris (1995) attempts to provide the theoretical framework that was lacking in

Gelb’s A Study of Writing. He introduces questions about many aspects of writing, written

communication, and writing systems, that such a framework should answer. However many

of these questions are of a higher-level theoretical perspective than will be dealt with in this

framework, e.g. the arrangement of text on signs.

The study of writing systems has also been addressed from the perspective of creating

new orthographies for languages that have no written form. These works attempt to

determine or suggest how to best represent a spoken language in written form. As previously

mentioned, Pike (1947) addresses how spoken language can be reduced to writing. Smalley

edited a useful volume dedicated to this perspective, which presents insights into many of the

18

problems encountered (1964). These are not problems of description, but rather problems of

analysis and design, and thus, have not been found to be useful to this study.

These contributions to writing system theory aid the study of writing system

descriptions by alerting us to the vast diversity of the linguistic units that may correspond to

some unit of writing. This correspondence may be only partial. These linguistic units are

discussed further in Section 6.1.

2.2.3 Formal contributions

The theoretical works on writing systems which are of a formal nature tend to be

much more concerned with a means of indicating the relationships between the graphic

forms and the underlying linguistic units they represent.

Nunberg (1990), in the only work of its kind, analyzed English punctuation and

provided rules to account for his observations. He suggested that punctuation (as well as

other graphical features) is a text-category indicator:

The term punctuation is generally used to refer to a category defined in
partially graphic terms: a set of non-alphanumeric characters that are used to
provide information about structural relations among elements of a text,
including commas, semicolons, colons, periods, parenthesis, quotation marks
and so forth. From the point of view of function, however, punctuation must
be considered together with a variety of other graphical features of the text,
including font- and face-alternations, capitalization, indentation and spacing,
all of which can be used to the same sorts of purposes. … I will talk about all
of these graphical devices as instances of text-category indicators of written
language. (page 17)

Thus, for Nunberg, text category indicators delimit pieces of text as being distinct

from the surrounding text in some way. Quotation marks delimit text that is spoken, thought,

19

or in some way referred to. Colons, semicolons, and commas delimit clauses at different

levels.

He also distinguishes between two grammars of writing: the lexical grammar, which

corresponds to the spoken grammar, and the text grammar, which indicates how the text is

combined to form larger categories such as paragraphs. He suggests certain text categories on

which the text grammar can operate as well as the functions of these text categories. Since

the design of the framework of writing system descriptions approaches the description from a

general perspective, these categories will not be enforced but would provide a useful starting

point for many descriptions.

Sproat (2000) offers a formal computational theory of writing systems. He attempts to

answer the following questions (page xvii):

• What linguistic elements do written symbols encode?

• Do writing systems differ in the abstractness of the linguistic

representation encoded by orthography, and if so, how?

• What are the formal constraints on the mapping between linguistic

representation and writing?

Although some of these issues had been previously addressed, this had usually been

“in an informal fashion” (page xvii).

Sproat models the relationship between written and linguistic forms (page 6) by

viewing this relationship as one where “particular (sets of) linguistic elements license the

occurrence of (sets of) orthographic elements” (page 9). He creates the term

Orthographically Relevant Level (ORL), defining it as “that linguistic level of representation

20

at which [regular correspondences between linguistic elements and their orthographic

expression] are most succinctly stated” (page 10). Both DeFrancis (1989) and Haas (1983)

would probably have used this term had it been available to them.

He then makes two central claims: (1) a regular relation maps the ORL to the

spelling, and (2) the ORL is “consistent across the entire vocabulary of the language” (page

19). Following Nunn (1998), he assumes that the regular mapping from the ORL to the

spelling consists of “a set of graphic encoding rules and a set of autonomous spelling

rules” (page 14). Thus, rules indicate the relationships between the linguistic units and the

writing units. Later chapters, will draw extensively from Sproat’s work in the formal

descriptions.

2.3 Descriptions of writing systems

Numerous writing systems have been described to varying levels of completeness.

Some of these are published; others remain unpublished. SIL International has writing

system descriptions for many of the languages that have been studied by SIL linguists.

However, these usually remain in branch archives around the world and are not publicly

available. This thesis attempts to provide a format that could help to make these more widely

available. Some published descriptions feature a particular language, while others are

collections. These descriptions do not typically describe the method or process that was used

for description. When they do, the statement is usually terse.

The following sections briefly describe the actual instances of writing system

descriptions that were used as exemplars for the design of the framework for writing system

21

description. These represent the actual information about writing systems which scholars

have thought useful to make available.

2.3.1 Collections of writing system descriptions

Tucker (1971) lists symbols that are used by various systems for writing African

languages, but he does not provide specific information about how a set of symbols is used in

a particular language.

Nakanishi wrote his book, Writing Systems of the World: Alphabets, Syllabaries,

Pictograms (Sekai no Moji), to provide a “relatively simple survey of scripts for collectors

and general readers rather than specialists” (1980:7). He includes 29 languages, the basis for

selection being the existence of a daily newspaper. He provides the following statement

about his methodology:

The content of each section varies according to the script discussed, but
generally it includes: a chart of the symbols or letters used, with pronunciation
readings; a list of the most important signs and diacritical marks; a discussion
of the mechanics of script writing—style of letter, shape transformation, tone
and vowel indication, joining of letters, etc.; notes on reading and script
direction; and the figures used for numerals. In addition, a recent newspaper
sample is given as an example of the script in daily use. (page 9)

Thus, Nakanishi found an inventory of the symbols, their pronunciations (or

mappings to linguistic units), and a discussion of the mechanics of the script as well as notes

on reading to be important in writing system descriptions. This is exactly the type of

information that writing system descriptions seek to capture.

The Alphabets of Africa, edited by Hartell, endeavors to “make accessible to a wider

public a sample of some 200 alphabets of the languages of Africa, especially those alphabets

22

developed in the last 20 years” (1993:v). Hartell’s summary of the situation of the writing

systems of African languages pertains to many of the world’s languages, “The

documentation of those systems… is largely unknown and hard to obtain outside of their

immediate area of use” (1993:v). Besides limiting itself to only 200 of the more than 500

African languages that have writing systems, this collection is limited in two notable ways:

“it does not deal with all the countries, nor does it treat each writing system fully” (1993:vii).

However, the work is easy to use due to the consistency of the samples. It is a perfect

example of the utility of even incomplete writing system descriptions, for “the exact purpose

of the book is to present readers with the barest minimum of information on the speech

sounds of these language samples and the graphemes used for representing them” (1993:viii).

As for the process that was used, the following statements are given:

As much as possible, we have tried to present the alphabet systems in this
volume in a consistent format. Each alphabet system presented consists of
four parts: (1) a phonemic inventory with its orthographic representations, (2)
examples using the alphabet characters in words from the language, (3) a
linear list of the alphabet in alphabetical order (characters are called
graphemes and include simple characters as well as digraphs), and at the end
of each country chapter (4) selected bibliographic information. (page 21)

The phonemic inventory of each language is presented in three columns,
roughly dividing the consonants into plosives, nasals, and continuants, and
dividing the vowels into front, central, and back. Below the vowels in the
chart, any features such as length, nasalization, labialization, etc. are listed.
Finally, tone was indicated where it occurs, though sometimes it is not
included in the actual orthography in use. (page 21)

The purpose of the Alphabets of Africa, namely comparison of many African writing

systems, severely limited the detail present in these writing system descriptions. Yet, it also

23

contains some important information to be included in a writing system description:

bibliographic information, examples of words, and an alphabetical order.

The landmark book edited by Daniels and Bright, The World’s Writing Systems,

describes many of the major languages of the world. They claim that their work is unique in

that it goes beyond the typical information included in surveys of the world’s languages or

scripts to “include information about how the scripts represent the languages” (1996:xxxv).

The theoretical basis for their description is limited to the following statement:

Each contributor was asked to provide a historical sketch and the table of
signforms in their standard order and their variations, but the bulk of their
work was to be a description of how the script actually works— how the
sounds of a language are represented in writing, along with a brief text in the
language(s) the script is used for. (1996:xxxv)

The text is presented not only in the script but also in the standard transliteration, and

in transcription using the International Phonetic Alphabet. In addition, literal and free

translations for the text are given.

Daniels and Bright do not consider a writing system to be unique to a particular

language. Thus, they make no distinction between the terms writing system and script. A

close look at The World’s Writing Systems indicates that it is a treatment of the world’s

scripts with practical application made to a single language that uses the given script. They

do mention what they believe is required in order to describe a writing system linguistically,

namely, “the characters of each writing system must be inventoried, and their use and

interpretation ascertained” (1996:1). Although this is quite a broad set of requirements for a

writing system description, in practice, the writing system descriptions present in this volume

24

include many important elements including an example text in the orthography and the

description of how the characters correspond to linguistic elements.

Kannaiyan presents, in chart form, a comparison of Roman, Brahmi, Tamil Grantha,

Tamil, Telugu, Canarese, Malayalam, Hindi, Kashmiri, Punjabi, Gujarathi, Assamese,

Bengali, Oriya, Urdu, Sinhalese, and Burmese scripts (1960). For purposes of comparison,

this format is interesting but it lacks the precision necessary for a scholarly comparative work.

Campbell’s Handbook of Scripts & Alphabets (1997) contains a set of short but

helpful descriptions for 43 languages. These are primarily concerned with the inventories of

units with some prose to explain some interesting features of the particular writing system.

Several compilations of descriptions of the writing systems of Nigerian languages

have been produced (Williamson 1983, Banjo 1985, Armstrong 1986)—a testimony to the

“greater interest in Nigerian languages currently shown by Government, educators, and the

general public” (Williamson 1983:v). These are some of the best exemplars of editorial

consistency in the writing system descriptions.

2.3.2 Writing system descriptions for individual languages

Weir provided an account of ongoing research, which attempted to analyze the

spelling-to-sound relationships for English “in order to discover not only the basic patterns

involved, but also, the levels on which these patterns operate” (1967:173). The model that

she and her colleagues created drew on three linguistic levels: “grapheme, morphophoneme,

and phoneme” (1967:176). Because they believed that “English orthography is subject to

morphophonemic rules” (1967:177), simple associations between phonemes and graphemes

were rejected in favor of “hierarchically ordered rules” that would “map the single morpheme

25

graphemic word onto the morphophonemic level, and then, through the application of further

appropriate rules, onto the phonemic level” (page 173). Rules are used quite extensively

within the literature to describe the correspondences between writing units and linguistic

units.

Richard Venezky worked with Ruth Weir until her death in 1965. He wrote a

computer program to determine spelling-to-sound correspondences for his master’s thesis

(1962) and wrote his Ph.D. thesis (1965) on the spelling and sound correspondences in

English. He provides summaries of his work in two articles (1967a, 1967b). His book, The

Structure of English Orthography (1970), not only provides a detailed discussion of English

orthography, but also provides a helpful discussion of orthographic analysis that includes

determining the spelling units (1970:34), the graphic alternations (1970:37), and the

relationships of graphic units to sound (1970:39).

Derwing, Priestly and Rochet have also attempted to formulate rules to describe the

relationships between spelling and sound for English, French, and Russian. Indeed, they

claim to have “achieved a level of systematicity and homogeneity of description … [as well

as] a level of comprehensiveness of coverage and attention to details which were lacking in

many previous works of this nature” (1987:32). They propose three different types of rules:

spelling, pronunciation, and phonetic detail rules.

Wijk presents rules for pronouncing English, which he identifies as the most puzzling

piece of the English writing system for “it is a generally recognized fact that the English

language presents far greater difficulties with regard to its pronunciation than any other

European language” (1966:7).

26

Some descriptions of writing systems are really teaching methods with exercises in

learning the writing systems, e.g. for Burmese (Roop 1997). In addition to helpful

descriptions of the writing system, these provide information about how to “draw” the

characters correctly.

A number of other writing system descriptions were used as exemplars but had no

special components in their presentations that would be useful to mention and are included

here as documentation of the process. Sandefur (1984) presents an extensive description of

Australian Kriol from the theoretical perspective of the development of new writing systems.

Bender, Head and Cowley provide a description of the Ethiopian writing system (1976).

Ronald Schaefer describes the writing system of Emai, a language of Nigeria (1987). Bruce

Grant describes the Korean writing system (1982). Tadadjeu and Sadembouo edited a

description of general principles to be used by all Cameroonian writing systems (1984).

2.4 Requirements for descriptions of writing systems

A number of SIL International’s branches have requirements for writing system

descriptions. However, these have not been published in any form. For this thesis, the

branches of Burkina Faso, Cameroon, Cote d’Ivoire/Mali, Eastern Congo, Ghana, Indonesia,

Kenya, Mainland Southeast Asia, Mexico, and the Philippines provided copies of their

orthography manuals which state their requirements and which I referenced as part of my

research.

Most of these provided a worksheet for listing the phonemes (along with the

allophonic variations) and the symbol used to represent that phoneme. The punctuation

marks and their uses may be discussed. Usually, an example of a word that uses each symbol

27

may be indicated. In addition, they may have a place to discuss any issues, which have arisen,

or motivation for the particular selection of a given symbol. They may provide a place to

make comparisons to other languages in the region that may have sociolinguistic influence.

Some included a place for discussion about how loan words are handled in the orthography,

how words are broken, and how morphophonemic issues are handled. Some included a

section on alphabetical order. Many asked for a sample text in the orthography.

Most devoted the majority of their attention to the process for devising and

standardizing an orthography rather than how to go about describing the orthography.

2.5 Computational models

The need for computerized models of text, which include information about the

writing system, has been known for some time.

Becker (1984) challenged the field of computer science to extend the model of text to

encompass any language: “the computer should deal with a universal notion of ‘text’ broad

enough to include any of the world’s living languages in any combination” (page 96). He

split this problem into three subtasks:

There must be a way for text to be represented in the memory of a computer;
there must be a way for text to be typed at the keyboard of a computer; there
must be a way to present text to the typist. I shall refer to these realms as
encoding, typing, and rendering. By rendering, I mean both the display of text
on the screen of a computer and the printing of text on paper. (1984:96)

Simons (1989) repeated Becker’s challenge, “we need computers, operating systems,

and programs that can potentially work in any language and can simultaneously work with

many languages at the same time” (page 538). In addition, he added the requirement that

28

users should be able to extend the computer’s “knowledge” of scripts, faulting Apple’s Script

Manager for not providing “a general mechanism for defining new scripts” (page 538).

Simons then argues that a general implementation of writing systems is

computationally feasible. Simons’ model follows in distinguishing between the form (graph)

and function (character) of writing system units.

The proper modeling of writing systems thus requires a two-level system. At
the functional level are information units called characters. At the formal
level are elements called graphs. The higher-level units called characters are
realized by the lower-level units called graphs. (1989:541)

His model allows “users to describe new writing systems by expressing the mapping

from characters to graphs as rewrite rules” (1989:545). Simons then shows that even

complex rendering problems can be solved by these rewrite rules and converted into

instructions that are quite simple for a computer to handle.

Hosken et al. (2000) defines a language for writing rewrite rules to express the

relationship between characters and glyphs as suggested by Simons. This is used by the

Graphite system under development by SIL International.

Simons and Thomson (1998) also dealt with the issue of multilingual computing, and

described problems associated with multilingual computing along with the solutions they

have implemented in a system called CELLAR. In addition, they provided a model for

defining characters and implementing sorting for a variety of languages.

The Text Encoding Initiative (TEI), a scholarly initiative to provide a means to

interchange documents in the humanities, provided a formal model for describing writing

systems:

29

The writing system declaration or WSD is an auxiliary document which
provides information on the methods used to transcribe portions of text in a
particular language and script. We use the term writing system to mean a
given method of representing a particular language, in a particular script or
alphabet; the WSD specifies one method of representing a given writing
system in electronic form. A single WSD thus links three distinct objects:

• the language in question
• the writing system (script, alphabet, syllabary) used to write the

language
• the coded character set, entity names, or transliteration scheme

used to represent the graphic characters of the writing system

Different natural languages thus have different writing system declarations,
even if they use the same script. Different methods used to write the same
language (e.g. Cyrillic or Latin encoding of Serbo-Croatian), and different
methods of representing the same script in electronic form (e.g. different
coded character sets such as ASCII or EBCDIC, or different transliteration
schemes) similarly must use different writing system declarations. (Sperberg-
McQueen and Burnard 1999:563)

Birnbaum, Cournane and Flynn suggest two uses of the WSD (1999:27):

• to document transcription methods in a human-readable form, so
that those who need to render, transform, or otherwise process
the document will understand the meaning of the encoded
information, and

• to support automated access to such representational information
as the character codes and glyph identifiers associated with the
characters … [in textual] content.

Not only are these laudable goals, but the authors argue that they are demonstrable as

well. However, WSDs do not seem to have been embraced by many users of TEI. “Despite

the indisputable documentation and processing value of a formal writing system description,

the WSD appears to be one of the least-used features of the TEI guidelines” (Birnbaum,

Cournane and Flynn 1999:50).

30

In addition, TEI’s WSD does not provide a means to describe the relationships

between graphic units or between linguistic elements and their corresponding graphic units.

Only a limited set of classes that can be applied to any character.

The Unicode standard assigned limited semantics to character codes. Its primary

scope is in the area of encoding. The Unicode standard has done much to make multilingual

computing possible. The standard seeks to provide a “uniform method of character

identification which would be more efficient and flexible than previous encoding

systems” (Unicode Consortium 2000:3). However, Unicode does not fully capture all the

information that is necessary to process text in a writing system. For example, sorting,

locating text element boundaries, and even rendering are left up to implementations. In

addition, Unicode provides a block of character codes called the “Private Use Area” that has

been left undesignated to be used by those who need to exchange information that cannot be

encoded using other definitions. Any character that is in the Private Use Area needs to be

fully described.

The World Wide Web Consortium has produced a draft of a character model for the

World Wide Web (Dürst and Yergeau 1999). It provides a flexible understanding of the

notion character, which is both language and user dependent:

Japanese Hiragana/Katakana are syllabaries, not phonemic alphabets. A
character in these scripts is therefore not a phoneme, but a syllable. Korean
Hangul combines symbols for phonemes into square syllabic blocks.
Depending on the user and the application, both the individual symbols as
well as the syllabic clusters can be called characters. Indic scripts use semi-
regular or irregular ways to combine consonants and vowels into clusters.
Depending on the user and the application, both individual consonants and
vowels as well as consonant clusters or consonant-vowel clusters can be seen
as characters. (1999:§3.1 Characters as seen by Humans)

31

Additionally, this document points out the fact that numerous many-to-many

relationships exist in a computerized model of text.

Linguists have begun to realize the flexibility that is demanded by the study of

language and to demand this flexibility of the computer software they use. Antworth and

Valentine have described the requirements that a linguist brings in regards to software.

Included in these requirements are the ability for a user to define alphabets and sorting

sequences (1998). Hockey requires software to allow the user “to define the make-up of a

word and the alphabetical sequence used for sorting words” (1998:119).

2.6 Summary

Although many descriptions of writing systems have been written, no single reference

describes the components that should be included in writing system descriptions. Although

the phonological literature is replete with approaches to describing the phonology of a

language, the comparable privation in the writing system literature is stark. Actual

descriptions, along with the requirements from SIL International’s branches, form the best

indications. The computational literature has dealt with subsets of the problem and

acknowledged it, and even created a partial solution. The next chapters now build on these

foundations as they develop a formal model for the description of writing systems.

32

Chapter 3: The problem

3.1 Rationale for the study

There are two primary reasons why this study is important. First, writing systems

need to be described. Such descriptions enable newcomers to become acquainted with the

writing system. The implicit knowledge of the inner workings, relationships and mappings

must be made explicit and made available to those who are interested in understanding how

writing systems work. Second, writing systems need to be formally described in such a way

that computer programs can have access to their information. This allows computer programs

to adapt their functionality to whatever writing system is in use.

The advent of computer technology has created an altogether new medium for

writing: digital writing, where writing is retained not on paper or clay tablets but in a series

of invisible electronic bits and bytes. The fact that computers themselves are able to store

writing means that the relationship between graphic units and computational units must be

described. There is enough overlap between the information about writing systems that is

required by computers and that required by people to merit electronic writing system

descriptions that can address the concerns of both parties.

When computer programs use electronic writing system descriptions as the source for

information about the writing system, computational tasks which are writing system

dependent can be handled in a general, efficient way for any language that has an electronic

writing system description. Some of these tasks include breaking text strings into units such

33

as words or sentences, hyphenation, patterned searches, and sorting. Since the electronic

writing system descriptions exist separate from the computer programs that use them, one

description can be shared by many programs and new descriptions can be created without

modifying the program’s code.

This study hopes to encourage the description of writing systems and the

dissemination of the knowledge contained therein. For those linguists involved in the

creation of writing systems for as yet unwritten languages, the availability of descriptions

may provide a resource for comparison which may serve as a guide for possible solutions to

difficult problems they face while creating a writing system. This study contributes toward

the larger goals of documenting and describing linguistic information for languages around

the world.

In the past years, the Internet has become a source of information for people all over

the world. The Internet is a natural method for widely disseminating copies of writing system

descriptions. Standardized writing system descriptions can be gathered in a repository and

made available for linguistic research or for people who are simply interested to see the

writing system of a particular language.

Additionally, writing system descriptions aid in the documentation of archived

materials. A writing system description attached to archived material may allow future

generations to read documented material that they otherwise would have to decipher for

themselves.

34

3.2 Theoretical framework

The theoretical framework for electronic writing system description that underlies

this work is an eclectic one, drawing from a theory of writing systems and computational

processes, as well as a broad base of linguistic theories from phonetics, to phonology, to

syntax and semantics.

3.3 Statement of the problem to be investigated

The purpose of this study is to design a method for describing the writing systems of

the world, which can be used as an information source for computers and people alike. This

study specifically addresses the concerns of two audiences: (1) linguists who are interested in

learning about a particular writing system or in describing one,8 and (2) computer

programmers who want to make general applications that can work with the writing systems

of many different languages.

3.4 Elements to be investigated

This thesis seeks to address the following questions in relation to writing system

descriptions:

• What is the relevant information that should be included?

• How should this information be arranged?

8 A larger audience, but with fewer requirements, are the citizens of the world who want
to know how to interpret what they see in a text published on the Internet.

35

3.5 Limitations of the study

With over 2000 written languages, each with its own writing system, the attempt to

provide a general framework for the description of writing systems seems lofty indeed.

However, the present study of writing system descriptions has been limited in a few ways:

1. Only those writing systems that represent natural languages are

supported. Thus, mathematical and musical notations fall outside this

scope. It may be that the proposed framework could be extended to

encompass these domains as well, but that will be left for further research.

2. The descriptions are primarily concerned with linguistic and data

processing motivations. Thus, instruction concerning the proper method

for writing a script (including the path of a stroke and the order in which

these strokes are drawn) is outside the scope of this work. However,

provision is made for indicating the prototypical form of a graphic unit.

3. Only a small cross-section of the writing systems of the world will be

tested using the proposed method. Although the intent of this research is

to design a method for describing writing systems that is general enough

to handle the wide variation attested in the world’s writing systems, to

completely validate that such a method has indeed been designed and can

accurately handle any of the world’s writing systems would involve the

task of describing every writing system in the world. However, Simons

has demonstrated that the prominent diversity of the world’s writing

systems are governed by simple processes, considering that “while there

is tremendous diversity in the graphic symbols …, there is not very much

36

conceptual diversity” (1989:539) in the writing systems of the world.

Thus, if we determine the conceptual processes that operate and provide

a means of describing writing systems in terms of these similarities, the

wide variation should be able to be handled.

4. The data for the examples of electronic writing system descriptions will

be limited to previously published (non-electronic) descriptions.

Although the published descriptions may not be as thorough as will be

possible in the electronic form, even the smallest amount of description

is worthwhile and should be supported and encouraged.

5. Because these descriptions concern writing systems, this study has

assumed that the other linguistic aspects which correlate with writing

systems have been described elsewhere and may be referenced

electronically.

6. Writing systems are, in a way, a type of grammar for writing, indicating

how the graphic patterns used to represent speech do so. However, for

many writing systems, a complete analysis requires a lexical component

to handle exceptions to the more general rule. Writing system

descriptions cover the information that can be handled by rule and is not

present in a lexicon. In order to account for all the processes involved in

writing or reading a text, the information present in the writing system

description may need to be taken in conjunction with information that is

present in a lexicon. No attempt is made to formally integrate the two.

37

7. This study is concerned with synchronic description and not diachronic.

Thus, this system enables the description of the writing system of a

particular language at a particular time and is not able to trace the

historical development of writing systems.

This framework is general rather than specific. The attempt here is to make the

framework broad enough to encompass all writing system descriptions. A more specific

framework may be possible when there is more extensive and complete data available for

study. Hopefully, this project will encourage such work.

3.6 Definition of terms

The term writing has been most aptly defined as “a system of more or less permanent

marks used to represent an utterance in such a way that it can be recovered more or less

exactly without the intervention of the utterer” (Daniels 1996:3).

Due to the general nature of this work, it has been necessary to create the cover terms

linguistic element, graphic unit, and computational unit to refer to entities which would

usually be referred to by a more specific term.

A linguistic element is “any unit of language.” Linguistic elements include

linguistically etic and emic units. Thus, a phone, a phoneme, a morpheme, a syllable, a word,

a sentence or even a discourse are considered linguistic elements. Also included are the

intermediate units that may exist in an analysis of language as in Booij’s treatment of Dutch

spelling where “intermediate levels [between underlying forms and phonetic information]

can be represented in Dutch spelling” (1987:216).

38

A graphic unit is simply “any unit of writing.” Thus, strokes, radicals, letters,

characters, graphic syllables, and graphic words can be graphic units. Typically, the lowest

level of a hierarchy of written structure that corresponds to a linguistic element is referred to

by the terms character or graph (Sampson 1985:22). Daniels and Bright defined the term

character to be a “general term for any self-contained element of a writing system” (1996:xl).

Yet, a graph is a unit of writing irrespective to its function in the system.

The term grapheme will be used “in the manner of many commentators on writing

systems, to denote the minimal functional distinctive unit of any writing system” (Henderson

1984:15 (note)), despite Daniels’ insistence that the term grapheme “ought to be jettisoned”

since “the emic system should not be expected to apply to writing” (Daniels 1992:534).

For the purpose of this thesis, a computational unit is “a number used by a computer

to identify a graphic unit.” A code point is “a computational unit which identifies a

character.” An encoding is “a computerized representation of writing” and defines a set of

characters that can be represented as well as their associated code points. Thus, in the ASCII

encoding, the letter ��������� is represented by the code point 97. A glyph is “a particular

rendering pattern used by the computer to render a graphic unit.”

The terms writing system, script and orthography can be easily misunderstood as

they are often used interchangeably in ordinary conversation. However, these terms do have

technical definitions that allow us to distinguish between them. Sproat aptly defined a script

as “a set of distinct marks conventionally used to represent the written form of one or more

languages” (2000:25). Thus, a script is not necessarily tied to any one particular language.

For example, the Roman or Latin script is used by English, French, and many others, but the

Hangul script is used only by Korean.

39

A writing system is a “set of conventions used to represent a language in writing”.

Writing systems tie linguistic expressions to written forms. The writing system chooses from

the set of distinct marks available in the particular script and thus may not incorporate every

symbol that the script makes available. According to Mountford (1996), writing systems can

be classified into five “functional kinds” (page 627): orthographies, stenographies,

cryptographies, pedographies, and technographies. Orthographies are the “ordinary systems

of writing” (page 629), and thus often the term orthography can be legitimately substituted

by writing system without any change in meaning. Orthographies include systems for

spelling as well as many other resources which the other kinds of writing systems may not

require, for example, systems of punctuation and systems of numeric symbols (page 630).

Orthographies always relate to one particular language. Every written language has either a

standard or a conventionalized orthography. The International Phonetic Alphabet is an

example of a writing system that cannot be called an orthography since it does not relate to

only one particular language. Instead, it is a technography, a tool “designed and used by

linguists engaged in linguistic activity” (page 628).9

Since this method of description can be used by any of the five types of writing

systems, the term writing system is favored as the object of these descriptions.

9 Stenographies are systems of shorthand for quickly taking dictation. Cryptographies are
systematic manipulations of the orthography to create a coded message which makes
reading the message difficult unless one knows the “key”. Pedographies are simplified
systems that are used for instruction until the students can graduate to the complete
system.

40

3.7 Summary

This thesis provides a framework for describing writing systems. It is a formal

framework so a computer can gain access to the information. It is a complete framework, so

that every writing system of the world can potentially make use of it. This framework should

be useful to linguists and to computer programmers alike.

41

Chapter 4: Background information

In order to understand some of the material in this thesis better, a limited

understanding of how computers have historically treated text is needed. This chapter also

introduces the Extensible Markup Language (XML), the formal notation system of the

framework that will be used for describing writing systems.

4.1 How a computer treats text

Becker (1984) summarizes the tasks that computers are called upon to perform for

text processing:

There must be a way for text to be represented in the memory of a computer;
there must be a way for text to be typed at the keyboard of a computer; there
must be a way to present text to the typist. I shall refer to these realms as
encoding, typing, and rendering. By rendering, I mean both the display of text
on the screen of a computer and the printing of text on paper. (1984:96)

Computers cannot act on text directly, for computers are designed as number

crunchers, not text crunchers. However, when text is represented as numbers, computers can

become text crunchers. Thus, for each of these tasks, the units that the computer operates on

are “governed by a single, basic fact: the computer can store only numbers” (Becker 1984:96).

Computers owe much of their modeling of text to the typewriter. With the typewriter,

a person pressed a key and the form identified by that key appeared on the paper. When a

different form was needed, a different key needed to be typed. This system was then modeled

by computers. “In the early days of computing, … character generation was hard-wired into

42

video terminals and molded directly into print chains and type fingers” (Simons and

Thomson 1998:203). Thus, in order for a character to be displayed to the user, a number

would be sent to the video terminal, and the video terminal would then display the particular

character represented by that number. The same process was used for printing. When a user

would press a key on the keyboard, a number would be sent to the computer to represent

which character had been typed, and the computer would use a number to store the character.

For simplicity, the numbers used to represent a particular character were the same for each

process whether encoding, typing, or rendering. Thus, when the letter ��������� was typed on the

keyboard, the number 97 was sent to the computer. When the computer stored the letter ���������,

it stored it as the number 97, and when the letter ��������� needed to be rendered, the number 97

was sent to the video terminal or the printer. These mappings are represented formally in

Figure 1.

Figure 1 Simple computational unit mappings

It is for this reason that computers have treated characters primarily as unique graphic

forms.

Because most computer display terminals have a built-in one-to-one mapping
from character codes to displayed forms, computer users have been forced to
encode information at the level of form. That is, to get the correct graphic
forms in the correct contexts it has been necessary to store distinct character
codes for the distinctive forms. (Simons 1989:541)

43

The special-character approach encodes information in terms of its visual
form. It says that if two characters look the same, they should be represented
by the same character code, and conversely, if they look different, they should
have different codes. (Simons 1998:12)

However, as computers became more sophisticated and the need to represent text in

languages which use non-Latin-based scripts became more acute, the computer’s treatment of

text has changed. The constraint of a one-to-one correspondence has been removed. A

computer still treats a typed character as a number and stored characters as numbers and even

the instructions to render characters as numbers. However, there has been a decoupling of

these such that the relationship between typing, encoding, and rendering is more complex

and more powerful. For instance, Figure 2 illustrates a mapping where the letter ��������� is not

typed with a single key or even stored as a single code point. Instead, one types the ��������� key

followed by the ��������� key to represent the letter ���������. This is not stored as ����������, or ��������� but rather

it is stored as the code point for the letter ��������� followed by the code point for the acute accent

(����	����). This in turn, maps to a single glyph which positions the acute accent above the letter

��������� to form ���������.

Figure 2 Complex computational unit mapping

This example was somewhat arbitrary and could just as easily have had more than

two glyphs, a single code point, and a single key code.

44

4.2 XML in a nutshell

In order to formalize the description of writing systems, we need to have a formal

syntax for representing this information. The Extensible Markup Language (XML) is a

popular representation language which is both declarative and formal. It is easily read and

understood, being a text-based format. XML provides features that allow documents to be

validated against a standard. By modeling writing system descriptions using XML, we gain a

formal model that assigns meaning to components that can be read by a computer, ensures

consistent presentation for all descriptions, and guides researchers so that they are able to

produce complete descriptions.

XML provides a way to segment a text into parts and to identify these parts by name.

For example, the title of this chapter is Background Information. Because this stretch of text

can be considered a single unit that designates the name of the chapter, we may enclose this

text with the label chapter-title as shown in Figure 3.

<chapter-title>Background Information</chapter-title>

Figure 3 An XML element delimiting a span of text

A span of text so designated is called an element in XML. It has a name (chapter-title)

and contents (the text "Background Information"). An element is delimited by two tags, an

open element tag <chapter-title> and an end element tag </chapter-title>. Each tag contains

the name of the element, delimited by the less-than symbol (<) and the greater-than symbol

(>). A slash (/) indicates that the tag is an end tag.

45

Elements can occur within other elements. Thus, Figure 3 could be treated as in

Figure 4, where title is contained within chapter.10

<chapter>
<title>Background Information</title>
…
</chapter>

Figure 4 An XML element hierarchy

When elements nest, a hierarchy of elements is created. When elements of the same

type nest, the tags are properly nested so that the first end tag terminates the most recently

introduced start tag. In Figure 5 the first occurrence of </section> closes the second

occurrence of <section> and the second occurrence of </section> closes the first occurrence

of <section>. The outermost section includes the innermost section.

<section>
<section>This is the innermost section.</section>

</section>

Figure 5 Nested XML elements of the same type

Elements may contain any combination of text and elements as illustrated in Figure 6.

<example>
This is a more
<change>
<from>complicated</from>
<to>sophisticated</to>

</change>
example.

</example>

Figure 6 An XML element with mixed content

10 Other elements such as sections or paragraphs would also normally be included in the
content of a chapter but have here been omitted for the sake of simplicity.

46

The example element contains both text and another element called change. The

change element contains two elements, from and to, each with its own text content.

Since the name of an element indicates its type, elements are usually named according

to the function of their contents. This is not a requirement, however. As far as XML is

concerned, an element could be named title or blort. XML simply provides a general

mechanism for marking up text. The semantics of an element’s name or content must be

agreed upon by a user community.

Suppose that we want to include the name of the person who made the change in

Figure 6, we could add an element named by as in Figure 7.

<change>
<by>Allison</by>
<from>complicated</from>
<to>sophisticated</to>

</change>

Figure 7 Secondary information as an XML element

However, the by element seems to indicate secondary information that pertains to the

content of the element, whereas from and to indicate primary content. XML allows elements

to have both primary and secondary content. The secondary content is indicated by an

attribute of the element. Attributes are included within the start tag and have names and

values as in Figure 8, where the element change now has an attribute by with value Allison.

<example>
This is a more
<change by="Allison">
<from>complicated</from>
<to>sophisticated</to>

</change>
example.

</example>

Figure 8 Secondary information as an XML attribute

47

Elements with no content or only secondary content are called empty elements and

may have either a form such as <page-break></page-break> or <page-break/>.

XML uses the Unicode character set. Characters may be inserted in text by reference

using the form { where 123 is the number of the code point of the Unicode character

to be inserted or ካ where 12AB is the hexadecimal value of the code point of the

character. This is most useful when the character does not fall into the ASCII set or is not

easily entered directly from the keyboard.

48

Chapter 5: Design requirements

Before designing a system for the description of writing systems, it is helpful to have

a clear statement of the requirements of such a system. Some requirements could be applied

to systems of description in general, while others are specific to writing system descriptions,

in particular.

5.1 General requirements

A system of description should accommodate different theoretical perspectives and

allow for different practical analyses. This requirement acknowledges the transitory nature

of theoretical analysis. The theory that is in vogue today will likely be replaced by another

tomorrow. It also acknowledges that descriptions are not made without some theory. It is the

theory that indicates the types of questions that we should be asking and thus the answers

that we describe. Descriptions may span theories when those theories share similar elements

and perspectives. However, it is understood that a system of description cannot truly be

theory neutral—it can only avoid directly specifying the theoretical perspective in which it

has been framed. As a corollary to this requirement, any system should be able to be

described in its own terms. This comes from a presupposition that the categories developed

in a language to refer to its writing system are more accurate descriptions than a category

named artificially.11 Thus, there is a theory behind every method whether implicit or explicit.

11 This idea has been defended in Ellis (1993).
49

Pike (1982) as well as Matthiessen and Nesbitt (1996) have called on linguists to

realize the role that theory (both implicit and explicit) plays in their observations and thus

their descriptions. “The theory is part of the observer; a different theory makes a different

observer; a different observer sees different things, or sees the same things as structured

differently” (Pike 1982:3). Summing up Pike’s (1982) statements on theory, Matthiessen and

Nesbitt say “In Pike’s view, a linguistic theory is … a tool or resource for construing what

we observe. It determines what we see and it allows us to construe patterns” (1996:51).

Since there are potentially many theoretical perspectives on the study of writing

systems, a general system for the description of writing systems must accommodate the

distinct perspectives that arise in the description while unifying these descriptions to a degree

that allows systematic comparison.

Thus, in the description framework, it is taken for granted that a writing system

description involves a description of one analysis of a writing system, which includes

analysis of the graphic forms and the linguistic elements they represent. The writing system

can be viewed as a grammar for writing. Halliday has claimed that “the grammar’s function

is to construe: the grammar transforms experience into meaning, imposing order in the form

of categories and their interrelations” (1996:7). Thus, the writing system description must

indicate the categories and the interrelations that impose order on the writing system.

These categories and interrelations exist because of analysis. Halliday mentions Ellis

(1993) as showing that “there are no natural classes: the categories of experience have to be

created by the grammar itself. Or, we might say, there are indefinitely many natural classes:

indefinitely many ways in which the phenomena of our experience may be perceived as being

50

alike” (Halliday 1996:8). There may be analyses that fit more closely with a native speaker’s

own sense as to what happens, which may be considered better analyses.

A system of description should be treated as a wholly contained unit, containing all

the information that would be necessary for publication. This acknowledges that the

information contained within descriptions is useful to the academic community at large and

should be made available. Additionally this acknowledges that there are components which

are characteristic of all publications that will be required as slots within this system.

The system should allow for partial descriptions as well as complete descriptions.

This presumes that while more description is better than less, some description is better than

none. Analysts may not have the time or resources to engage in the complete description of a

writing system. Therefore, the analyst should be able to use the system to describe the extent

of his research. In fact, sometimes, analysts desire “to present readers with the barest

minimum of information” (Hartell 1993:viii) for the purpose of comparisons between

languages. The system should make the analyst aware of the slots that he is omitting so that it

is a conscious choice to omit information rather than oversight.

The system should allow elements to be declared and to be related to all the other

elements that have been declared. Halliday suggests that there should be no distinction

between “describing some feature and relating it to other features: describing anything

consists precisely of relating it to everything else” (1996:21). Thus, analysis of a writing

system consists of determining the elements of writing systems to be described and then

relating them to “everything else”.

51

5.2 Specific requirements for writing systems

In addition to the preceding general requirements for systems of description, the

following requirements, specific to the description of writing systems, apply.

• The system must allow a machine to access and understand the

information contained in the description.

• The system may additionally provide explanations of the formalism

intended for humans, beyond what a computer can process.

• The system must allow linguistic analysis of the writing system.

• The system should allow for enough information to be provided about

the rendering of the writing system such that a Graphite12

implementation can be created by a human.

• The system should allow conversion between different writing systems

that may exist for the same language.

• The system must be able to handle writing systems with any number of

units from tens to thousands of writing system units.

The writing system framework that will be introduced, must handle all the above-

mentioned issues to be considered complete and adequate.

12 Graphite is a rendering system currently being developed by SIL International which
enables contextual glyph selection and positioning (Correll 2000).

52

Chapter 6: Elements of writing systems

The first step toward creating a model of writing system descriptions is to determine

the components which need to be described.

This chapter explores all the elements that we may presuppose to exist as part of a

writing system, namely, linguistic elements, graphs, graphemes, higher-level writing system

units, classes of graphs, and computational units. These element types are presented in turn

in the following sections. In each section, I first discuss how to identify these elements and

then describe their properties. Following that, I provide examples and the formalism for those

examples. In the next chapter, I will demonstrate how these elements can be related to each

other.

6.1 Linguistic elements

Linguistic elements have a particular type, a name by which they can be referenced,

and possibly a reference to a descriptive resource where one can find further information.

These characteristics of linguistic elements are discussed below.

Herrick states that characters have “certain correspondences with linguistic units in

the spoken form of its language” (1974:10). This view, that characters correspond to certain

linguistic elements, has been the basis for the linguistic study of writing systems. Given that

“the written notation symbolizes one aspect or another of linguistic structure” (Hall

1964:264), the questions then become, what linguistic structures are symbolized and how?

53

As defined previously, a linguistic element is “any unit of language”. It is beyond the

scope of this thesis to attempt to provide guidance in the identification of these linguistic

elements. Gelb included “ phrases, words, syllables, single sounds, and prosodic

features” (1963:13–14) as linguistic elements. Because “writing systems operate on different

levels and emphasize different units of language” (Coulmas 1989:270), the corresponding

linguistic elements may be from any linguistic level, including “the phonemes, the

morphophonemic alternations, or the morphemes of a language, or more than one of these at

the same time” (Hall 1964:266).

Linguistic elements may include linguistically etic or emic units or even units

representing some intermediate stage between the etic or emic units. We need to explicitly

specify the type of linguistic unit, that is whether it is a phoneme, a phone, a morpheme, or

something else. This is an open-ended list and can even include intermediate derivational

forms.

Booij argued that intermediate linguistic elements such as those that exist in some

analyses of the correspondences between phonetic information and the underlying phonemes

“can be represented in Dutch spelling” (1987:216). “The spelling of the past tense singular of

verbs with stems ending in underlying ��������� or ���������” (1987:219) illustrates this graphic

representation of intermediate forms. The underlying form of “to rob” in the past tense

singular is ����
���������. After undergoing syllabification and syllable final devoicing, we are

left with the intermediate form �����
���������. A voicing assimilation rule restores the voicing to

leave us with the final phonetic form ����
��������. “The orthographical form �������������� represents

the intermediate level of derivation �����
���������” (1987:219). The whole process can be seen in

Figure 9 taken from (Booij 1987:219, no. 8).

54

Figure 9 Dutch phonological derivation levels for ��������������

This illustrates clearly the need to include intermediate levels as a type of linguistic

element in its own right for the correspondence between the linguistic unit and the graph is

most succinctly stated in terms of the form which is only present in an intermediate level.

The linguistic elements of interest to writing system descriptions will ultimately be

shown to correspond to graphic forms. Thus, part of the analysis of a writing system is to

identify these linguistic elements.

It is not the place of writing system descriptions to describe the various linguistic

elements that it will reference. The linguistic elements will simply be referenced and the

interested reader may explore them in depth in publications which provide a detailed account

of the particular type of unit. Thus, a writing system description assumes that linguistic

elements have been adequately described elsewhere.

Because I am assuming that linguistic elements are fully described elsewhere and it is

not the place of a writing description to do otherwise, we simply need to be able to make the

link to the definition of the linguistic element in another publication. In everyday language, a

name is probably sufficient for this purpose. Names are one way of establishing a link to a

referent. If the definition of the linguistic unit exists electronically, we can formally reference

this definition by means of a Uniform Resource Identifier (URI).

The properties of a linguistic element then are its type, its name, and optionally a link

to another descriptive resource.

55

Orthographies most commonly correspond to the linguistic elements of phones,

phonemes, syllables, and morphemes. Figure 10 demonstrates how the phone ��������� is

represented formally as an instance of a linguistic unit.

<linguistic-unit type="phone"
id="phone-esh">

<name>�������</name>
</linguistic-unit>

Figure 10 Simple formal instance of linguistic unit

Figure 11 demonstrates the formal representation of the phoneme ��������� as well as an

example link to an electronic resource that describes the sound system.

<linguistic-unit
link="www.sil.org/descriptions/phonology/English#phoneme-p"
type="phoneme"
id="phoneme-p">
<name>p</name>

</linguistic-unit>

Figure 11 Complex formal instance of linguistic unit

When the syllable ���������� is regarded as a basic linguistic element, it is represented

formally as in Figure 12.

<linguistic-unit type="syllable" id="syllable-ka">
<name>ka</name>

</linguistic-unit>

Figure 12 Formal instance of syllable as linguistic unit

This same syllable can be treated as though it were simply a sequence of

phonemes, ��������� + ���������, in which case the phonemes are listed one after another as in Figure 13.

This treatment depends on the analysis. If the syllable as a basic unit were what corresponds

56

to the unit of writing, Figure 12 would be preferred. However, if the sequence of phonemes

were considered to be what corresponds to the writing, Figure 13 would be preferred.

<sequence>
<linguistic-unitRef target="phoneme-k"/>
<linguistic-unitRef target="phoneme-a"/>

</sequence>

Figure 13 Formal instance of syllable treated as a sequence of phonemes

When a morpheme is regarded as the basic linguistic element, it is represented

formally as in Figure 14.

<linguistic-unit type="morpheme" id="niàn">
<name>niàn</name>

</linguistic-unit>

Figure 14 Formal instance of morpheme as linguistic unit

Just as syllables can be decomposed into a sequence of phonemes, so morphemes can

be likewise decomposed as in Figure 15. Analysts must make their own decisions as to which

linguistic unit should be treated as primary.

<sequence>
<linguistic-unitRef target="phoneme-n"/>
<linguistic-unitRef target="phoneme-i"/>
<linguistic-unitRef target="phoneme-a"/>
<linguistic-unitRef target="phoneme-n"/>
<linguistic-unitRef target="phoneme-tone-4"/>

</sequence>

Figure 15 Formal instance of morpheme treated as a sequence of phonemes

The identifying names found as the content of the linguistic-unit element are arbitrary

as far as the system is concerned but should be the actual name or other intelligible

designation of the particular linguistic element.

57

When an intermediate level unit must be referenced, as in the case of Dutch

mentioned above, the type should be intermediate and a link should be made to the level of

rule at which the correspondence is made as in Figure 16.

<linguistic-unit
link="www.sil.org/desc/phonology/Dutch.xml#syl-final-devoicing"
type="intermediate"
id="inter-f">
<name>f</name>

</linguistic-unit>

Figure 16 Formal instance of intermediate level as linguistic unit

6.2 Graphs

The most basic information associated with any description of a writing system, is the

fundamental assumption that writing is built up from discrete segments, that is, “significant

units of visually perceived form” (Hall 1960:13). Some of these graphic units directly

correspond to linguistic elements while others, although identifiable, have the sole function

of forming graphic units. The dot of the letter ����
���� forms a part of the letter and in no way can

be said to correspond to some linguistic element. The letter as a whole does have a

correspondence, however.

A graph is a unit of writing, recognized as a whole, which corresponds to a linguistic

element and cannot be further decomposed into units of writing which correspond to

linguistic elements. The graph is then the basic symbol of the writing system. The letter ����
����,

then, is a graph but the dot is not.

Sproat points out the difficulty that may be encountered in determining which unit

should be designated as the graph:

58

It is convenient to refer to a single Chinese character as being a [graph]….13

… However, there is clearly important internal structure in Chinese characters
… and from the point of view of a finer-grained analysis of Chinese writing,
these smaller units would certainly be called … [graphs]. (Sproat 2000:28)

This finer-grained analysis structurally decomposes many Chinese characters into

corresponding characters which provide clues as to the composite’s referent. One such way is

to combine two characters such that each provides a semantic component. For example, ���������

����������� “good” can be seen as a combination of the character ��������� “female” and the character

��������� “child”. Another system of structural compounding combines one character which

provides the semantic component with another which provides the phonetic component. For

example, ��������� ������������� “cicada” can be seen as a combination of the character ��������� “insect”

and the character ��������� ������������� (Sproat 2000:144). Since each of these parts can be

corresponded to a linguistic unit, Chinese characters would need to be decomposed into their

respective parts and each of these parts treated as a distinct graph. Thus, ��������� ���� ������ “good”

is composed of two graphs: ��������� “female” and ��������� “child”.

Sproat has compiled evidence to support this decomposition:

While Chinese characters certainly contain nonphonological information, it is
nonetheless the case that skilled Chinese readers have learned an association
between characters and their corresponding syllables that allows for very rapid
access to the phonological form, in effect bypassing the rest of lexical access.
(Sproat 2000:172)

Other evidence demonstrates that Chinese readers use the phonetic component when

present to read unfamiliar words:

13 Sproat uses the term grapheme here “as a convenient short way of saying basic symbol
of a writing system” (Sproat 2000:28). I use the term graph to refer to the same concept.

59

Chinese readers, when encountering an unfamiliar character, will attempt to
guess its pronunciation from the phonetic component. Indeed, with a
completely unfamiliar character, they have no choice but to adopt this
strategy. An instance of this is the character � <FISH+XUE> xuě “cod”.
Apparently, this character was a Japanese invention… where the second
element � was used not for its pronunciation xuě but for its meaning
“snow” (the flesh of the cooked cod being snowy white). Thus, the correct
analysis for Japanese would be <FISH+SNOW>…. When this character was
borrowed back into Chinese, Chinese readers interpreted the � component as
a phonetic component, thus assigning the character the pronunciation xuě.
(Sproat 2000:146)

Therefore, in order to fully account for the workings of the Chinese writing system,

including the knowledge that a literate person has, the decompositions must be accounted for.

A similar problem arises with English and other languages which use digraphs to

represent a single linguistic element. When �����
���� occurs in the word �����
���
����, is it a single

graph, since it represents a single phoneme ����!����? No, because �����
���� can be subdivided into

two graphs which can be shown to have a linguistic correspondence. It is a digraph, a

sequence of two graphs with a single function. The same is true of the use of ���������� in Spanish.

The fact that a Spanish literate would probably want to give equal status to ���������� and ��������� is

taken up in Section 6.3.14

The basic description of a graph begins with the name of the character to enable basic

communication concerning the writing system. Herrick believes that the name is a universal

property of every graphic unit in any system of writing: “whenever a written mark is an

14 It should be evident to the astute reader that a certain amount of theory has been
presented here in the form of determining what a graph is and how to identify one. This
may seem to contradict the earlier stated goal of not introducing a bias toward a
particular theory within the description methodology. It should be obvious that even the
designation of the units as graphs involves analysis. The system allows analysts to make
their own decisions as to what constitutes a graph which may differ from my discussion
here.

60

embodiment of a letter of a certain language, any normal literate of that language can name

the letter which it embodies” (1974:10). Because writing is taught, it is reasonable to assume

that there is language for referring to the parts of writing, a “writing system metalanguage,”

which is used in teaching and in communication about the process of writing.

Thus, there are two ways to designate the names of graphs from the perspective of the

users of the writing system. The first is to use a phonetic transcription of the name. The

second is to use a “native” spelling. Other user communities may have designated other

names. For example, the study of ancient writing forms often leads researchers to give names

to the observed forms despite the lack of any native speakers.

Since there are potentially many different names for the same graph, the name’s type

can be indicated. If the type designation is omitted, it is assumed that the name represents the

native community’s name for the graph in the native orthography. A type of pronunciation

indicates that the name represents the native community’s pronunciation of the name. Types

of translation or a particular transcription may also be useful. The first of the names is

considered the most common.

In addition to the property of name, every graph has a prototypical form. This can be

demonstrated using an image. This image may in addition, diagram the method for writing

the particular graph by means of a set of stroke patterns and directions, as in Figure 17,

which illustrates the stroke patterns used to produce the Burmese character top indented ba.

Figure 17 Graph stroke patterns for Burmese top indented ba

61

A unique identifier is also assigned to each graph so that it can be referenced by other

parts of the system.

Other characteristics that may be specific to a particular writing system will be

accounted for in the section on classes below.

For American English, the letter ��������� has the name ����"
�����, the letter ��������� has the name

�����#����, ��������� has the name ����$#����, and so on as shown in Figure 18.

<graph id="a">
<name xml:lang="x-ENG-IPA"

type="pronunciation">���</name>
</graph>
<graph id="b">
<name xml:lang="x-ENG-IPA"

type="pronunciation">�	</name>
</graph>
<graph id="c">
<name xml:lang="x-ENG-IPA"

type="pronunciation">
	</name>
</graph>

Figure 18 English names of graphs

Brazilian Portuguese has other names for the same graphic forms: the letter ��������� has

the name ����"�����, the letter ��������� has the name �����
����, ��������� has the name ����$
����, and so on as shown

in Figure 19.

<graph id="a">
<name xml:lang="x-POR-IPA"

type="pronunciation">��</name>
</graph>
<graph id="b">
<name xml:lang="x-POR-IPA"

type="pronunciation">��</name>
</graph>
<graph id="c">
<name xml:lang="x-POR-IPA"

type="pronunciation">
�</name>
</graph>

Figure 19 Portuguese names of graphs

62

The markup for the Burmese character great ka is given in Figure 20. The identifier

of the character is only used internally so here I have simply used the designator ka. It could

have just as easily been bur-1 or even d1fuo4s, or anything else you may choose. The English

translation of the name is given as well as the name in Burmese. Another transliterated form

of the name as established by William S. Cornyn in the teaching of Burmese is also presented.

<graph id="ka" image="ka.gif">
<name xml:lang="x-Burmese">u-uD;</name>
<name type="translation" xml:lang="EN-us">great ka</name>
<name type="Cornyn transcription">ka.ji:</name>

</graph>

Figure 20 Formal instance of Burmese graph declaration

6.3 Graphemes

It is obvious that the surface units of writing, the graphs, exist. Nevertheless, do emic

and etic principles apply to these graphs in the same way that they do to linguistic elements?

If so, what are the underlying forms of graphs? These questions have been debated

extensively.

Many writing system researchers “assume the existence of a unit called grapheme and

build from there” (Daniels 1992:528). Thus, for many researchers of writing systems, the

answer to these questions is yes, emic and etic principles apply to graphs in the same way

that they do for linguistic elements and that the underlying forms of graphs are graphemes.

However, Daniels has seriously questioned the validity of such assumptions. His

argument can be summarized as follows: “No linguist should use a term grapheme without a

detailed, explicit theory of graphemics, graphetics, allographs, maybe archigraphemes and

other accoutrements of emic theory” (1992:528). No such theory exists. In addition, linguists

63

have used the term grapheme with different meanings, each of which identifies disparate

segments that are identified as graphemes. Daniels claims that “there is no coherent

definition of grapheme if the morpheme eme is to have any consistent meaning within

linguistics” (1992:531). He then presents ways in which writing systems are dissimilar to

phonemic systems. Ultimately, he disregards the application of emic theory to writing:

Emic terminology relates to a property of the human mind. It applies to
language, and to culture, and many aspects of human behavior because human
brains have evolved over the myriadennia in a way that produces such
behavior.… Therefore, the emic system should not be expected to apply to
writing because writing is a conscious invention.… The notion of graphemics
ought to be jettisoned, and with it the elusive—the impossible—concept of
grapheme. (1992:534)

To my knowledge, Herrick has been the only one to challenge Daniels’ claim in print.

He challenges the idea that emic theory cannot be applied to conscious inventions:

The fact is that people can learn not only the phonologies but also the writing
systems of languages, and there are linguistic theories which can handle this
fact. Our brains are equipped to receive sensations from both our eyes and our
ears. And, if our brains have evolved a general reasoning power which can
handle all those kinds of relationships that occur throughout language, and if
this reasoning power includes, among other things, the power to distinguish
between the emic and the etic—between differences that matter and
differences that do not matter, then any human can learn both a writing system
and a phonology of any language. (1995a:423)

Thus, the issue of emic theory is essentially the capability which all humans possess

to classify items as similar although these appear to be distinct from the outsider’s

perspective:

The basic phenomenon in phonemics and graphemics, as well as in semantics
and in non-linguistic human activities, seems to be the faculty of the brain to
classify numerous single items as members of a much smaller number of
species. Ultimately this labor of sorting and classing is a device of economy,

64

designed to crystallize the relevant features and abstract them from a mass of
non-distinctive individual details. Epistemologically and linguistically … this
may well be the most humanly intelligent performance of the human intellect.
(Pulgram 1951:20)

In his reply to Herrick, Daniels conceded the possibility of forms that vary given a

particular context:

For him, round and lunate Greek sigma or long and curly s in earlier Roman
type are examples of allographs; for me, those are one possible parallel of
conditioned allophonic variation—but so is the Etruscan use of ��������� before
��������� and ���������, ��������� before ��������� or ���������, and ��������� before ��������� for ���������. (1995:427)

For many this would seem to prove the case that the grapheme is an element in its

own right. Sgall sees the example of Greek sigma as a classic case requiring a grapheme:

Different characters are variants of a single grapheme if they do not differ in
their systematic function … and … each of them occurs only in such
contextual positions (determined by graphemic context) in which the other
cannot occur (combinatory variants, such as the two forms of Greek sigma).
(1987:8)

Because the graphs ���� ���� and ���� ���� can be shown to exist in complementary distribution,

we could posit the existence of an underlying form that is a grapheme representing the two

varieties of Greek sigma. We can then write rules to explain the correspondences between the

grapheme and its surface forms: ���� ���� is only found word finally while ���� ���� is found in every

other environment. The phoneme ����$���� then corresponds to this grapheme sigma and we are

left with the rules in Figure 21.

Figure 21 Rules for Greek sigma including grapheme

65

Although this demonstrates that a grapheme can be postulated, it still does not

demonstrate the need for such an element. After all, there is only a simple one-to-one

correspondence between the phoneme ����$���� and the grapheme sigma. If we omit the grapheme,

we can still account for the data using rules such as those in Figure 22. Since this is the

simpler explanation, it is also the better explanation in the absence of any other role for the

grapheme sigma in the description.

Figure 22 Rules for Greek sigma omitting grapheme

Therefore, simply assuming a unit called a grapheme due to evidence of

complementary distribution does not buy us anything. Unfortunately, Daniels does not make

this point explicitly, or it would have made his case even stronger. At any rate, the burden of

proof is placed on someone to show that either (1) there exists a relationship between the

sound system (or another linguistic system) and the writing system, which can be accounted

for more simply by the use of the grapheme than without it, or (2) that the grapheme is a unit

which is psychologically real in that it exists in the mind of the literate user of the writing

system. The fallacy of many who seek to demonstrate the psychological reality of the

grapheme is that they unintentionally equate the phoneme with the grapheme, thereby

demonstrating the psychological reality of the phoneme rather than the grapheme.

Perhaps the best evidence of the psychological reality of the grapheme is when the

“letters of the alphabet” are itemized by a speaker of the language. This in itself is

problematic in that many aspects of the writing system are omitted in such a listing. For

example, punctuation characters and the numbers are omitted in the English alphabet,

66

although they form a very real part of the writing system. However, the fact that Greek sigma

is not listed twice seems to provide at least some psychological evidence for the reality of a

single grapheme.

As mentioned in the section on graphs, a Spanish literate would probably want to

give equal status to ���������� and ���������. This is because ���������� would be listed as a letter of the alphabet

by a Spanish literate. Thus, when putting words into alphabetic order, ���������� is treated as a

single unit that falls between ��������� and ���������. Thus there seems to be evidence that ���������� is

considered a single unit by a Spanish literate. Such psychological evidence seems to be

enough to merit the introduction of the grapheme as the unit to which ���������� would be assigned.

Since the purpose of this paper, is to support description of a wide variety of writing

systems using many theoretical perspectives, the issue of what designates a grapheme is not

as important as the fact that the possibility for such a unit of description exists. Different

analyses may designate different graphemes. The grapheme is an emic unit, which represents

the form that a literate user deems important. However, this does not mean that every writing

system analysis would find the concept of grapheme useful or necessary.

A grapheme has the same properties as a graph: namely, a unique identifier so that

the grapheme can be referenced by other parts of the system, a set of names by which the

grapheme is referenced in speech and a prototypical form.

The declaration for the Spanish grapheme ���������� is represented in Figure 23.

<grapheme id="ll" image="ll.gif">
<name xml:lang="x-ES-IPA" type="pronunciation">���</name>

</grapheme>

Figure 23 Formal instance of grapheme declaration

67

6.4 Writing system units

Although graphs (or possibly graphemes) are the building blocks of writing, there are

higher-level units that are created when these building blocks are arranged. Orthographic

syllables, words, phrases, and sentences are all made from arrangements of these building

blocks. Because these units are dependent on the internal structure of the writing system, a

classification system is writing system dependent. Thus, in the description system, I provide

the mechanism for declaring these higher-level units and relating them to each other.

The writing system unit has a name that corresponds to the level of the unit. It also

has a unique identifier so that it might be referenced within the system. In addition to these

features, the writing system unit has a composition declaration that defines the unit in terms

of lower-level writing system units or graphs (or graphemes). The composition declaration

uses rewrite rules to define these writing system units.

In English, words are composed of the letters of the alphabet. They may also have a

hyphen or an apostrophe as part of the word. The formal declaration for English words is

given in Figure 24.

68

<writing-unit id="word">
<name>orthographic word</name>
<is-made-of>
<sequence>
<repeatable>
<classRef target="alphabet"/>

</repeatable>
<optional>
<choice>
<sequence>
<graphRef target="apostrophe"/>
<optional>
<repeatable>
<classRef target="alphabet"/>

</repeatable>
</optional>

</sequence>
<sequence>
<graphRef target="hyphen"/>
<repeatable>
<classRef target="alphabet"/>

</repeatable>
</sequence>

</choice>
</optional>

</sequence>
</is-made-of>

</writing-unit>

Figure 24 Formal instance of word writing unit declaration

Sproat discusses the need for “a more powerful notion than simple

concatenation” (Sproat 2000:34) and introduces five catenation operators to handle some of

the more complex script phenomena such as that exhibited by Chinese characters: leftwards

catenation, right catenation, downwards catenation, upwards catenation, and surrounding

catenation. He believes that inside catenation is not necessary because “the only cases where

such placement occurs is in fossilized forms” (Sproat 2000:50), but I include it as a

possibility since it may prove necessary for some analyses other than Chinese. While the

notion of catenation is valuable to East Asian languages, its benefit for the other writing

systems of the world remains to be shown.

For instance, Sproat gives the following illustration of catenation:

69

The Chinese 	 lín “fish scale” is composed of the components,
, �, �,
and
, arranged as follows:
→[�↓[�
]]. (Sproat 2000:37)

Figure 25 illustrates the formal declaration for the catenation involved in this example:

<catenate type="right" minOccurs="1" maxOccurs="1">
<graphRef target="�"/>
<catenate type="down" minOccurs="1" maxOccurs="1">
<graphRef target="�"/>
<catenate type="right" minOccurs="1" maxOccurs="1">
<graphRef target="�"/>
<graphRef target="�"/>

</catenate>
</catenate>

</catenate>

Figure 25 Formal instance of catenation declarations

A general declaration for a Chinese character is shown in Figure 26.

70

<writing-unit id="character">
<name>character</name>
<is-made-of>
<choice>
<repeatable>
<catenate type="down">
<classRef target="d-component"/>
<choice>
<classRef target="component"/>
<writing-unitRef target="character"/>

</choice>
</catenate>

</repeatable>
<repeatable>
<catenate type="left">
<classRef target="l-component"/>
<choice>
<classRef target="component"/>
<writing-unitRef target="character"/>
</choice>
</catenate>

</repeatable>
<repeatable>
<catenate type="up">
<classRef target="u-component"/>
<choice>
<classRef target="component"/>
<writing-unitRef target="character"/>

</choice>
</catenate>

</repeatable>
<repeatable>
<catenate type="surround">
<classRef target="s-component"/>
<choice>
<classRef target="component"/>
<writing-unitRef target="character"/>

</choice>
</catenate>

</repeatable>
<repeatable>
<catenate type="right">
<classRef target="component"/>
<choice>
<classRef target="component"/>
<writing-unitRef target="character"/>

</choice>
</catenate>

</repeatable>
</choice>
</is-made-of>
</writing-unit>

Figure 26 Formal declarations of Chinese writing units

71

Korean also has a syllabic unit which requires catenation, however it is not nearly as

complicated as Chinese. Korean always has a orthographic syllable structure of CV or CVC,

or CVCC. The final consonant cluster is always placed under the catenation of the onset and

the nucleus. However, the onset and nucleus may catenate horizontally or vertically and are

determined by the class of the vowel. A horizontally oriented vowel causes downward

catenation, while a vertically oriented vowel causes leftward catenation.

For example, the syllable ��������� is constructed from the combination of ���������, ���������, and

���������; while ��������� is constructed from the combination of ���������, ���������, and ���������.

Korean also has a special situation in which a vowel may be both horizontally

oriented as well as vertically oriented and cause the consonant to occur in the upper left hand

corner of the syllable block. For example, the syllable ����	���� is constructed from the

combination of ���������, ����
����, and ���������. At first glance, this seems like a case that Sproat’s

catenation operators cannot handle. However, the surround operator can be used here to

accomplish the desired effect, despite the fact that it is only partially surrounding the

consonant.

The formal rules for Korean catenation can be found in Figure 27.

72

<writing-unit id="syl">
<name>syllable</name>
<is-made-of>
<catenate type="down">
<writing-unitRef target="onset-nucl"/>
<writing-unitRef target="coda"/>

</catenate>
</is-made-of>

</writing-unit>

<writing-unit id="coda">
<name>coda</name>
<is-made-of>
<catenate type="left">
<classRef target="C"/>
<optional>
<classRef target="C"/>

</optional>
</catenate>

</is-made-of>
</writing-unit>

<writing-unit id="onset-nucl">
<name>onset nucleus</name>
<is-made-of>
<choice>
<catenate type="left">
<classRef target="C"/>
<classRef target="vertical-V"/>

</catenate>
<catenate catenate="down">
<classRef target="C"/>
<classRef target="horizontal-V"/>

</catenate>
<catenate catenate="surround">
<classRef target="C"/>
<classRef target="surround-V"/>

</catenate>
</choice>

</is-made-of>
</writing-unit>

Figure 27 Formal instance of Korean writing unit declarations

One may also desire to indicate “the direction of writing …[as] a property of the

writing system” (Simons 1989:549).

What we are referring to here … are the features of orientation. These are
(freak systems apart): axis, horizontal or vertical; direction, left-to-right/right-
to-left or down/up; and “lining” (often overlooked), i.e. whether the lines, in a
horizontal script, succeed one another downwards or upwards, or, in a vertical

73

script, succeed one another from right to left (as they do in fact in traditional
Chinese and Japanese writing) or from left to right. (Mountford 1990:706)

Figure 28 contains the catenation declarations for volumes, pages, and lines for

Korean. Notice that each level references the lower-level writing unit that composes it.15

<writing-unit id="volume">
<name>volume</name>
<is-made-of>
<repeatable>
<catenate type="left">
<writing-unitRef target="page"/>

</catenate>
</repeatable>

</is-made-of>
</writing-unit>

<writing-unit id="page">
<name>page</name>
<is-made-of>
<optional>
<repeatable>
<catenate type="down">
<writing-unitRef target="line"/>

</catenate>
</repeatable>

</optional>
</is-made-of>

</writing-unit>

<writing-unit id="line">
<name>line</name>
<is-made-of>
<repeatable>
<catenate type="left">
<writing-unitRef target="syl"/>

</catenate>
</repeatable>

</is-made-of>
</writing-unit>

Figure 28 Formal instance of Korean writing unit declarations

15 Line breaking and page breaking mechanisms are outside the scope of this work.

74

6.5 Classes

Classes of graphs (or graphemes) provide support for abstract pattern searches and

are used internally within the system. In the preceding section, classes were used to build the

structural patterns. When the sonorants are designated by creating a class of sonorants, we

are able to support the complex search requirements imposed by Antworth and Valentine:

Often one has a particular hypothesis in mind and wants to search a data set
for specific data items that will confirm or disconfirm the hypothesis.
Searching software must permit abstract pattern matching, not just finding
literal forms. For instance, most word processors permit you to search for a
literal string such as phoneme; but very few word processors permit you to
search for a pattern such as any word containing only sonorants. (1998:174)

Any set of graphs that share a feature form a class. Thus, all the members of a class

could be said to have the feature with the same name as the class’s name. Classes and

features can be interpolated from each other, thus I have chosen to only allow the description

of features in terms of class designations. This is for the purpose of storage so that there is a

single representation for the information, but it in no way limits the potential for another

system to overlay the same information to the user in terms of features.

In addition to having a set of graphs, classes have a unique identifier (for internal use)

and a set of names.

To create a definitive list of features or classes for all writing systems would be a

noble task but it is not necessary for our purposes. In order to support any writing system, we

must simply provide a mechanism for assigning graphs to classes and leave the choice of

class designations up to the analyst. I follow Pike’s advice that “the features themselves must

be treated as emic and as etically variable” (1982:88).

75

In one analysis of the English writing system the letters of the alphabet have two

forms, one uppercase (e.g. ���������, ���������, ���������, …) and the other lowercase (e.g. ���������, ���������, ���������,

…). Thus, we can differentiate these graphs by creating two classes: lowercase and

uppercase as in Figure 29.

<class id="lower">
<name>lowercase</name>
<graphRef target="a"/>
<graphRef target="b"/>
<graphRef target="c"/>
…
<graphRef target="z"/>

</class>
<class id="upper">
<name>uppercase</name>
<name>capitalized</name>
<graphRef target="A"/>
<graphRef target="B"/>
<graphRef target="C"/>
…
<graphRef target="Z"/>

</class>

Figure 29 Formal instance of class declarations for case

Classes can be defined to include other classes as in Figure 30.

<class id="letter">
<name>letter</name>
<classRef target="upper"/>
<classRef target="lower"/>

</class>

Figure 30 Formal instance of class declarations including other classes

As a shortcut, classes can also be defined to include another class and then to exclude

particular members as in Figure 31 where the class designating the consonants includes all

the letters excluding the class of vowels. There is a need to avoid circular declarations, and

thus all class declarations must ultimately be reducible to a set of graphs (or graphemes).

76

<class id="C">
<name>consonant</name>
<classRef target="letter"/>
<excluding>
<classRef target="V"/>

</excluding>
</class>

Figure 31 Formal instance of class declarations excluding other classes

One of the issues that arises with many Indic writing systems, is that a particular

graph may only exhibit a particular feature if it is in a particular position. Thus, the

interpretation of which class a particular graph is in may be context sensitive. In Hindi, for

example, each graph denotes a particular consonant and a default vowel. The default vowel

may be changed by the addition of a vowel diacritic sign. “A following short vowel a is

considered inherent in each consonant symbol; thus, unless these letters are modified by

other attached symbols, � is pa, and � is ra.… Vowels other than a, when they follow a

consonant, are written as obligatory diacritics … as in �� pu” (Bright 1996:387). Thus, the

definition of a class must include the ability to specify the context in which a particular graph

is a member of the class. Some example classes to handle Hindi are demonstrated in

Figure 32 where the base consonant is a consonant followed by a vowel diacritic (thus not

including the inherent vowel) and all other consonants include an inherent vowel.

77

<class id="base-consonant">
<name>base consonant</name>
<classRef target="consonant"/>
<when>
<followed-by>
<classRef target="vowel-diacritic"/>

</followed-by>
</when>

</class>

<class id="consonant-a">
<name>consonant with an inherent vowel</name>
<classRef target="consonant"/>

</class>

Figure 32 Formal instance of contextually determined class membership

6.6 Computational units

From the computational perspective, the computational task of handling writing is

split into three areas: input, storage, and rendering. Each of these has its own units: key

codes, code points, and glyphs, respectively. We will explore each of these. A computer

stores writing by encoding characters. “Encoding is governed by a single, basic fact: the

computer can store only numbers” (Becker 1984:96). Thus, each of the computational units

will center around a number which the computer uses to represent the particular aspect of

digital writing.

6.6.1 Key codes

A key code is a number that is generated by the keyboard when a particular key or

combination of keys are pressed. When the A key on the keyboard is pressed, the number 65

is sent as the key code to the operating system and made available to the current application.

When the A key and the Shift key on the keyboard are pressed at the same time, the number

78

81 is sent as the key code to the operating system and made available to the current

application.

Although this is technically what is happening from the computer software’s

perspective, this does not reflect the perspective of a user. From the perspective of the user,

he is pressing a labeled key or combination of keys. Thus, rather than require a user to

determine the number that the system generates when a key or combination of keys is

generated, a better solution is to allow the user to define the keys that are significant using

labels.

There is a problem with this though, in that different keyboards have different sets of

keys. For example, a Brazilian keyboard has a key dedicated to the ç letter. This key is

lacking on all American keyboards. Therefore, this framework will provide a set of standard

names for keys but this set is not considered all-inclusive. An implementation which

manages the keyboard from the information in these writing system descriptions must

provide a way for the user to add named keys and to associate them with their appropriate

value. Thus, the task of associating a key label with a key code has been left up to an

implementation.

The keystroke is a set of keys, indicated by their labels, that must be pressed

simultaneously. The keystroke that occurs when the Control key, the Shift key and the A key

are pressed simultaneously is represented in Figure 33.

<key-stroke value="CONTROL SHIFT A"/>

Figure 33 Formal instance of key code declaration

79

6.6.2 Coded units

Coded units are numbers which identify a particular character within a character set.

These may be standardized character sets, such as ASCII or Unicode or may be specialized

character sets. Coded units are the representation of writing that is stored by the computer.

Because different character sets have a different number of characters within their

inventories, some character sets require more space per character than others do. Therefore,

we need to determine the significant units. The character representing the letter ��������� in

English is given the coded unit with a value of 65. In the ASCII character set, this value is

stored within a context of 8 bits (enough to handle 256 characters or 28). In the Unicode

character set, this value is stored within a context of 16 bits (enough to handle 65536 or 216).

Currently character sets use either 8, 16 or 32 bits of significance.

The coded unit for the letter ��������� in the Unicode character set is shown in Figure 34

<coded-unit bits="16" value="65"/>

Figure 34 Formal instance of coded unit declaration

6.6.3 Glyphs

A glyph is a reference point into a particular font or set of fonts. Hosken et al. in their

Graphite Description Language identify four ways to identify a glyph (2000:8):

• by using the actual internal glyph number in the font.
• by Unicode value via the internal character map (cmap) in the

font, which takes a Unicode codepoint number and returns a
glyph number.

• by Postscript name
• by 8-bit character code according to a codepage and then via the

font character map.

80

The Unicode value and the character code are mappings themselves. They will not be

used to identify a glyph lest there be circular references. Thus, the glyph potentially has a

number which corresponds to the actual glyph number in the font, or a name. The number is

a decimal number. The font must be named when the glyph number is designated. The font

may be a list of comma-separated font names. The glyph can also have an image. Figure 35

provides an example of the glyph for the ��������� character.

<glyph number="100"
name="Ccedilla"
font="Arial, Times New Roman"
img="Ccedilla.gif"/>

Figure 35 Formal instance of glyph declaration

81

Chapter 7: Relationships between writing system elements

The major load of information in writing system descriptions involves relationships.

There are relationships between graphs themselves, relationships between graphs and

linguistic elements, between graphs and glyphs, graphs and their computerized encodings.

There may even be a relationship between the graphs of one writing system and those of

another as is commonly found in transliterated material. In addition, there are relationships

between graphs that must also be expressed. For our purposes, the relationships between

different types of elements of writing systems are mappings between these types. The

relationships between elements of the same type are relations.

7.1 Potential relationships

The question of how the elements of writing systems relate to each other is not as

simple as it may seem. From the linguistic perspective, the situation is straightforward. The

linguistic units correlate to graphs as in Figure 36 such that one may relate a linguistic unit to

a graph or a graph to a linguistic unit.

Figure 36 Linguistic relationships

All the relationships present from a linguistic perspective are bi-directional. That is,

the mapping from linguistic units to graphs (writing) and the mapping from graphs to

linguistic units (reading) are both significant. In the diagrams in this section, arrows indicate

82

the significant mapping relationships. A bi-directional mapping relationship is indicated by a

double arrow. Each arrow represents a set of rules which can be written to account for the

mapping relationships between the members.

If one includes graphemes in one’s analysis, the linguistic units correlate to

graphemes and the graphemes correlate to graphs as in Figure 37. The relationship between

the linguistic units and the graphs is indirectly specified by means of the graphemes and can

be inferred. Thus, the linguistic units may be mapped to the relevant graphemes or graphs (by

inference). The graphemes may be mapped to the relevant linguistic units or graphs; and the

graphs may be mapped to the relevant graphemes or linguistic units (by inference).

Figure 37 Linguistic relationships including graphemes

Figure 37 represents the conceptual processes involved in writing systems as

language is given written expression and this written expression is in turn interpreted back

into language.

The perspective from a computational vantage is very different from the linguistic

relationships since computational units do not deal with conceptual processes but rather

physically implement writing for a computer. The computational units are related as in

Figure 38 where key codes produce code points which in turn produce glyphs.

Figure 38 Computational relationships

83

Whereas, the linguistic relationships were bi-directional, the computational

relationships are unidirectional. Although key codes must be transformed into the appropriate

coded unit, the converse is not true, that is, coded units do not need to be transformed into

key codes.

These two perspectives, the linguistic and the computational, have largely existed

apart from each other. This thesis seeks to provide a mechanism to formally integrate the

two. In order to do so, we must now introduce a third perspective, that of the computational

implementer. The computational implementer seeks to understand how a writing system

works as understood from the linguistic perspective and then to design the implementation of

the writing system in the computational system in as straightforward a manner as possible.

The computational implementer must relate the linguistic perspective to the computational

perspective and vice versa.

Typically, a computational implementer will seek to provide simple relationships

between the linguistic perspective and the computational perspective. For example, Figure 39

illustrates a situation where a computational implementer has represented graphemes by

means of coded units (ideally with a one-to-one relationship) and has represented graphs by

means of glyphs.16

Figure 39 Computational implementation of writing

16 In the event that graphemes are not necessary to the analysis, the graphs are generally
represented by coded units and by glyphs.

84

Though it may be most common for coded units to represent graphemes, this is not

the only way to design an implementation. It is possible that the coded units could represent

graphs, graphemes, or even linguistic units at different levels. Multiple kinds of relationships

can be mixed within the same system, though such a system would be considered far from

ideal. The relationship that can be expressed most concisely is the better choice.

The mappings discussed above may be classified in terms of the perspective that they

describe: linguistic, computational, or implementational. Figure 39 represents mappings in

each of these groupings. The mapping describing the relationships between linguistic units

and graphemes is a linguistic mapping. The mapping describing the relationships between

coded units and glyphs is a computational mapping and the mapping describing the

relationships between graphemes and coded units is an implementational mapping.

All the relationships that are represented in Figure 39 need not be enumerated for a

complete description. Given the relationships in Figure 39, it is possible to determine the

glyphs for a particular coded unit by following one of two paths: from coded unit to glyph, or

from coded unit to grapheme to graph to glyph. Thus, either the relationship from graph to

glyph or the relationship from coded unit to glyph is superfluous since either could be

inferred given the other.

Figure 40 Minimal set of linguistic and computational relationships

85

Figure 40 illustrates a minimal number of mappings needed to accurately describe all

the relationships. These mappings have been chosen to represent the conceptual relationships

from the perspective of a user familiar with the writing system. Thus, the key codes have

been related to the graphemes rather than the coded units since a user is indicating the

particular grapheme by his key press and does not even need to know of the existence of

coded units. Likewise, the glyphs have been related to the graphs since they most closely

represent the actual forms of the graphs. It is interesting to note that no computational

mappings are made explicit in Figure 40. They may all be inferred given the other

relationships which are explicitly specified.

When graphemes are not present in the analysis, the graphs become a natural

constellation point through which all other elements relate. Thus, a key code would indicate a

particular graph. A graph would be expressed by a glyph and a graph would be stored by a

coded unit. Historically, the computational designer’s choice has been to equate glyphs and

graphs (thus we see a tendency toward precomposed glyphs as part of fonts rather than

decomposed ones) and, in addition, to equate code points and graphs. This simplified the

process by exclusively using one-to-one relationships. Unfortunately, many processes now

assume these one-to-one correspondences, even when many of the world’s writing systems

require relationships that are more complex. Forced oversimplification of one relationship

leads to another overly complicated relationship. A good designer must balance each

relationship in order to determine the best way to achieve overall simplicity in the

implementation.

Because this approach to writing system description does not seek to bind one’s

hands, but rather to simply provide the tools to make relationships explicit, it is able to

86

express the relationships between any elements of writing systems. Of course, as with any

analysis, the more concise and simple the analysis, while still accounting for all the known

data, the better.

It should be noted that a writing system description that includes only the linguistic

relationships provide an adequate description of an orthography. From such a description, a

computational designer could determine the key codes, coded units and glyphs that would be

necessary, and could determine the simplest way to implement them in terms of the linguistic

relationships. The other types of relationships (computational and implementational) are

necessary only to describe how the computer implementation works in terms of the writing

system.

7.2 Mappings

The correspondences between linguistic elements and graphs are rarely one-to-one

correspondences, for Gelb has aptly concluded that “writing can never be considered an exact

counterpart of the spoken language. Such an ideal state of point-by-point equivalence in

which one speech unit is expressed by one sign, and one sign expresses only one speech unit,

has never been attained in writing” (1963:15).

Haas concludes that the correspondences are “determined by rules and tendencies of

glotto-graphic translation: from speech into writing, and from writing into

speech” (1983:19). These rules must “identify the items that are matched” (page 19), and

“state the contextual conditions of that match” (page 19). These contextual conditions may

be simple, corresponding to a single linguistic level, or they may “refer to co-occurring

elements of other levels as contextual conditions of the match” (page 20). Sproat joins Haas

87

in affirming that “the mapping between linguistic representation and orthography can be

handled by context-sensitive rewrite rules” (Sproat 2000:16).

The linguistic correspondence to the graphs is not the only relationship that requires

more power than simple one-to-one correspondences. Simons warns that “in many writing

systems, a given letter of the alphabet is realized by different graphs in different

contexts” (1989:540). Becker (1984) described the need to break the singleness of

correspondence between character codes used in storage and the glyph identifiers in a font

and instead to define regular rules to define these correspondences. Simons demonstrated

that these rules can handle a wide variety of rendering problems and proposed that “a

generalized implementation of writing systems would allow users to describe new writing

systems by expressing the mapping from characters to graphs as rewrite rules. The computer

could take over from there to compile that description into a very efficient implementation as

a finite state transducer” (1989:545).17

Standards for representing units of writing in a computer do not always match the

linguistic analysis of the abstract characters. An encoding may split a single character into

two code points or there may be more than one way to represent the same character. In

Unicode, the LATIN SMALL LETTER E WITH ACUTE can be stored at code point U-

00E9 or by a sequence of code points U-0065 U-0301 representing LATIN SMALL

LETTER E and COMBINING ACUTE ACCENT, respectively. Likewise, an encoding may

combine two characters into a single code point. Some characters may need to rely on

context to determine the proper encoding.

17 A finite state transducer is one of the most simple and efficient computer algorithms.
SIL International’s work on a rendering system called Graphite (Correll 2000) promises
to bridge the gap and allow these rules to operate in real situations.

88

Because the relationships are not simple one-to-one relationships (Haas 1983:19,

Simons 1989:538) or even one-to-many relationships, a more complex and powerful system

of representing the relationships must be devised.

This problem of representing relationships is not new to linguistic study. Phonologies

and grammars make extensive use of rules to describe the relationships inherent within their

systems. Rules have been used extensively in the study of writing systems as well to

represent the relationships between characters and linguistic elements (Haas 1983, Derwing,

Priestly and Rochet 1987, Sproat 2000, Simons 1989).

In the descriptive framework developed here, the mapping from one set of elements

to another is defined by a set of correspondence rules. Correspondence rules differ from

traditional generative phonological rules in two notable ways. First, traditional generative

phonological rules are unidirectional (i.e., the rule specifies the relationship from one

element to another but not vice-versa), but correspondence rules are bi-directional (i.e., the

rule specifies the relationship from one element to another and vice-versa). Second,

traditional generative phonological rules are sequentially ordered rules (i.e., each rule applies

in sequence and the result of the operation becomes the input to the subsequent rule), but

correspondence rules operate in parallel and there are no intermediate stages.

Correspondence rules are two-level rules. The benefits of two-level rules are

summarized in Antworth (1990):

Because two-level rules express a correspondence rather than rewrite symbols,
they apply in parallel rather than sequentially. Thus, no intermediate levels of
representation are created as artifacts of a rewriting process. Only the lexical
and surface levels are allowed. It is this aspect of their nature that is
emphasized by the name “two-level” rules. Furthermore, because the two-

89

level model is defined as a set of correspondences between lexical and surface
representation, two-level rules are bi-directional. (pages 28–29)

Thus, by using correspondence rules which function as two-level rules, we are able to

express a single correspondence rule between the linguistic units and graphs. Thus, given the

graphs we can determine the corresponding linguistic units or given the linguistic units we

can determine the corresponding graphs. This is possible because two-level rules can

describe both levels in the environments.

Correspondence rules apply whenever their structural descriptions are met. Those

rules with more specific structural descriptions apply with greater precedence. A longer

match sequence is considered to be a more specific structural description. Thus, a match

sequence of ���������� is more specific than ���������. If this were not the case, the match sequence of

���������� would never be handled since a string with ���������� also matches the match sequence ���������.

Figure 41 Precedence of correspondence rules

In Figure 41, the second rule has a more specific structural description than the first

rule. The operator � means “corresponds to” and indicates a correspondence relation between

the items that precede it and those that follow. The first rule is essentially shorthand for

stating that ��������� when followed by anything other than ��������� corresponds to the phoneme ����������.

Figure 42 Precedence of correspondence rules with environments

90

When the match sequences are identical, a sequence with a longer environment is

considered to be more specific. In Figure 42, the second rule, which matches ��������� when it is

in the environment where it is followed by ���������� is more specific than the first rule which

matches ��������� when it is in the environment where it is followed by ���������. Again, this is

necessary for the longer environments to be matched at all. When two rules have the same

structural descriptions, they may be collapsed into a single rule and may be an instance of

free variation.

Antworth defines four distinct operators on two-level rules which are necessary for

the low level hand compiling that must be done for PC-KIMMO (1990:32–34). However, all

these operators may be inferred from the correspondence rule notation we describe without

the added complexity of determining which of the operators to use and how to use them in

conjunction with each other.18

Derwing, Priestly and Rochet (1987) indicate that rules should be “reasonably

concise”, “non-redundant”, and achieve “a level of systematicity and homogeneity of

description” (page 32). They also should “achieve … a level of comprehensiveness of

coverage and attention to details” (page 32). These are laudable goals but ones which must

18 The operator � “only but not always” is used when the correspondence
(regardless of the environment) exists only once in the entire rule-set. This can be
determined by a search of the entire rule-set.

The operator � “always but not only” is used when the underlying form in the
given environment exists only once in the entire rule-set. This too can be determined by
a search of the entire rule-set.

The operator � “always and only” is the combination of the operators � and �.
This is true when the conditions for both � and � are met.

The operator �� “never” is used to cover exceptions to a more general rule. I
have an exception clause within the rule to cover exceptions so this can also be inferred.

91

be self imposed by the analyst and not by the descriptive framework. However, the

descriptive framework should not limit the ability to produce such rules.

Haas requires his “glotto-graphic translation” rules to “(i) identify the items that are

matched and (ii) state the contextual conditions of that match” (1983:19). His statement can

be generalized to apply to any correspondence rule. Thus, a rule has three components: (1)

the initial state, and (2) the final state, corresponding to Haas’ “items that are

matched” (1983:19), and (3) the context or environment in which the rule applies. For two-

level rules, there is no initial or final state per se, since the rules are bi-directional. Instead,

the initial state is one member of the correspondence and the final state is the other. This

correspondence has an environment which in turn is a set of correspondences.

In a correspondence rule, the elements that correspond are indicated by a

correspondence element and the environment is designated by the when element. When there

are multiple environments, the correspondence is considered to apply if any of those

environments apply.

The correspondence between Greek ����$���� and sigma mentioned previously in the

section on graphemes is as in Figure 43, where word final ����$���� corresponds to ���� ���� and ����$����

corresponds to ���� ���� in all other environments. This is formally represented in XML notation

in Figure 44.

Figure 43 Sigma correspondence rule

92

<rule>
<correspondence>
<linguistic-unitRef target="phoneme-s"/>
<graphRef target="final-sigma"/>

</correspondence>
<when>
<followed-by>
<classRef target="word-end"/>

</followed-by>
</when>

</rule>

<rule>
<correspondence>
<linguistic-unitRef target="phoneme-s"/>
<graphRef target="sigma"/>

</correspondence>
</rule>

Figure 44 Formal sigma correspondence rule

Notice that this rule also sets up a constraint for the occurrence of the final-sigma

character form. It can only occur before a character in the class word-end. It does not

constrain the occurrence of the phoneme ����$���� since it occurs without constraint. When there is

no environment specified in a correspondence rule, the environment does not affect the

correspondence.

The rules in Figure 44 are not ordered, but the first rule has precedence over the

second since it has a more specific structural description.

The formal declaration for writing system units does not seek to establish any

constraints on the occurrence of certain sequences of characters. The set of these constraints

are called the graphotactics of the language. “Each language has graphotactic formulas which

state the combinations of graphemes which may occur in that language” (Herrick 1974:10).

The graphotactics are specified as part of the correspondence rules.

Sometimes we want to allow a choice between different units, or to define optional or

repeatable units. This is accomplished with the grouping elements: sequence and choice and

93

with the elements optional and repeatable. Sequence defines a sequence of units or groups,

while choice defines a choice between units or groups. The content of optional is optional

and there is no limit to the number of occurrences of the content of repeatable. Groups can

also exclude units. This is done by using the optional excluding element.

Figure 45 demonstrates an example sequence that is optional and contains the graphs

��������� and ���������.

<optional>
<sequence>
<graphRef target="m"/>
<graphRef target="b"/>

</sequence>
</optional>

Figure 45 Formal instance of an optional sequence

Figure 46 demonstrates an example choice that is required but may occur as many

times as desired. The choice is between the graphs ���� ����, ���������, and ���������.

<repeatable>
<choice>
<graphRef target="p"/>
<graphRef target="b"/>
<graphRef target="m"/>

</choice>
</repeatable>

Figure 46 Formal instance of a repeatable choice

An example rule from (Carney 1994:300) is presented in Figure 47. This is an

English spelling-to-sound rule that specifies that the letter ��������� corresponds with no sound

when it comes after the letter ��������� and before a word boundary. The letter ��������� may optionally

intervene between the ��������� and the word boundary. The corresponding formalism is presented

in Figure 48.

94

Figure 47 English graph to sound correspondence rule

<mapping-set cor1="graph" cor2="linguistic-unit>
...
<rule>
<correspondence>
<graphRef target="b"/>
<null/>

</correspondence>
<when>
<preceded-by>
<graphRef target="m"/>

</preceded-by>
<followed-by>
<sequence>
<optional>
<graphRef target="e"/>

</optional>
<classRef target="word-end"/>

</sequence>
</followed-by>

</when>
</rule>
...

Figure 48 Formal equivalent of English graph to sound correspondence rule

The null in the formalism is no linguistic unit as this rule is a member of the mapping-

set which define the correspondences between graphs and linguistic units.

Here are more cases of rules and how they would be represented in the formalism.

Derwing, Priestly and Rochet (1987) have successfully created a set of rules for Russian,

American English, and French which can produce phonetic forms from the orthographic

forms. It should be noted, though, that many of these rules “depend on specific boundary-

symbols, which in turn are defined (in part) with reference to grammatical entities (namely,

prefixes and prepositions)” (1987:46). Thus, the rules that describe the relationships of

graphic elements to linguistic elements may depend on other linguistic information.

For French, a number of rules are sensitive to grammatical information. Thus,
the sequence -ent in word final position represents schwa if it is the 3rd

95

person plural verb marker, or the nasal vowel ����%���� in all other cases, as
indicated in the following ordered rules: (Derwing, Priestly and Rochet
1987:47)

Figure 49 French correspondence rule referencing grammatical information

This can be formally represented as shown in Figure 50.

<rule>
<correspondence>
<sequence>
<graphRef target="e"/>
<graphRef target="n"/>
<graphRef target="t"/>

</sequence>
<linguistic-unitRef type="phone-schwa"/>

</correspondence>
<when>
<in>
<linguistic-unitRef target="morpheme-3p"/>

</in>
</when>

</rule>
<rule>
<correspondence>
<sequence>
<graphRef target="e"/>
<graphRef target="n"/>

</sequence>
<linguistic-unitRef type="phone-atilde"/>

</correspondence>
<when>
<followed-by>
<sequence>
<classRef target="C"/>
<classRef target="word-end"/>

</sequence>
</followed-by>

</when>
</rule>

Figure 50 Formal equivalent of French correspondence rule

96

Figure 51 contains the default rule for mapping the Burmese character great ka to a

phoneme by means of a simple one-to-one mapping.

<rule>
<correspondence>
<graphRef target="ka"/>
<linguistic-unitRef type="phone-k">

</correspondence>
</rule>

Figure 51 Formal instance of simple correspondence rule

Great ka in conjunction with a following supporting ya or encircling ra (medial

forms of supine ya and crooked ra, respectively), correspond to a palatal stop. This rule is

shown in Figure 52

<rule>
<correspondence>
<sequence>
<graphRef target="ka"/>
<choice>
<graphRef target="m-ya"/>
<graphRef target="m-ra"/>

</choice>
</sequence>
<linguistic-unitRef type="phone-c">

</correspondence>
</rule>

Figure 52 Formal instance of correspondence rule with context

In Burmese, certain characters take on different forms depending on their context. In

Figure 53, the grapheme (line) drawn down (yei: hca.) has a default rendering, but when

preceded by a consonant that makes this rendering ambiguous, a longer form of (line) drawn

down (long yei: hca.) is used instead.

97

<rule>
<correspondence>
<graphemeRef target="aa"/>
<graphRef target="yei:-hca."/>

</correspondence>
</rule>

<rule>
<correspondence>
<graphemeRef target="aa"/>
<graphRef target="long-yei:-hca."/>

</correspondence>
<when>
<preceded-by>
<classRef target="long-aa-C"/>

</preceded-by>
</when>

</rule>

Figure 53 Formal instance of correspondence rule

7.3 Relations

A description may need to indicate how one set of writing system elements are related

to another set of the same type of writing system elements. For example, many Roman based

orthographies need to indicate the capitalized forms of the lower case letters and vice versa.

These are two sets of graphs which are in a specified relation. A similar correspondence rule

is used to accomplish these relations. The distinction is that relation rules are contained

within a relation-set element which indicates the features which are embodied in the relation.

The upper case equivalent of the Turkish lower case dotless i ����!���� is ��������� and ����
���� is the

lowercase equivalent of ����"����. The features involved in the relation are lower case and upper

case. These correspondences are represented formally in Figure 54.

98

<relation-set feature1="lower case" feature2="upper case">
...
<rule>
<correspondence>
<graphRef target="idotless"/>
<graphRef target="I"/>

</correspondence>
</rule>
<rule>
<correspondence>
<graphRef target="i"/>
<graphRef target="Idot"/>

</correspondence>
</rule>
...

</relation-set>

Figure 54 Case relation rules

Given the information in the definition of the lower and upper case relation, a

program could transform the lower case forms into upper case or vice versa.

7.4 Collating sequence

Herrick recognizes what he calls an “alphabetic order” whereby “normal literates who

are given a group of written words (or other strings of characters that embody letters) can

arrange them according to this alphabetic order” (1974:10). This ordering relationship is not

confined to alphabets. Any language with a dictionary has the entries in some order defined

by the writing system. A computer will need access to this information if it is to perform the

task of sorting. Thus, characters may be ordered relative to each other within the writing

system. In computer terminology, the order is called a collating sequence

Linguists have made control over the sorting sequence a requirement for software

programs:

Sorting a data set according to a particular criterion groups all the bits of data
that go together, thereby allowing a pattern to emerge. As noted above in

99

connection with database programs, a sorting program for linguistic use must
permit the user complete control over definition of the alphabet and sorting
sequence. (Antworth and Valentine 1998:174)

At first, it would seem as though we could list all the characters in the order in which

they should occur. If we did this for American English, we would arrive at the list started in

Figure 55.

a A b B c C d …

Figure 55 Simple collation sequence

A close analysis of this treatment of capitalization shows that �������#$����, �������#$����,

�������$���� and �������$���� would be sorted as in Figure 56.

born
brown
Born
Brown

Figure 56 Words in alphabetical order separated by case

This may be a useful sort for some purposes, but the general practice for sorting

American English is for these words to be sorted as in Figure 57, so that words which differ

only in their capitalization are sorted next to each other.

born
Born
brown
Brown

Figure 57 Words in alphabetical order with case as second level

To get these results, we cannot simply use a single list. The typical solution to this

problem has been to create secondary sorting keys. The first sorting key sets up the order of a

series of equivalent units. When the comparison does not involve two units which are

100

deemed to be equivalent, only the first level is required. However, if the comparison involves

two units that are equivalent at the first level, the second sorting key applies in like fashion.

We can make lists of sorting orders to designate the sorting keys at each level of the sorting

algorithm. Capitalization becomes a secondary sorting key. The case distinction is not

factored in until the second level as in Figure 58.

level 1: (a=A) (b=B) (c=C) (d=D) …
level 2: a A b B c C d D …

Figure 58 Levels of sorting keys

This relationship can actually be captured by a collation tree as in Figure 59.

Figure 59 Collation tree

The first node in the tree contains the list of sequences at level one. The children of

any node are considered to be equal to each other at the level of the common ancestor.

Tree structures can be described in terms of nested sequences. In fact, nested

sequences are exactly how the tree structure inherent within every XML document is

represented. Thus, by using nested collating sequences, we are really defining a collating

tree. Figure 59 is represented formally in Figure 60

101

<collating-sequence>
<collating-sequence>
<graphRef target="a"/>
<graphRef target="A"/>

</collating-sequence>
<collating-sequence>
<graphRef target="b"/>
<graphRef target="B"/>

</collating-sequence>
<collating-sequence>
<graphRef target="c"/>
<graphRef target="C"/>

</collating-sequence>
<collating-sequence>
<graphRef target="d"/>
<graphRef target="D"/>

</collating-sequence>
…

<collating-sequence>

Figure 60 Formal collation tree

Diacritics, hyphens, and apostrophes must usually be treated in a similar manner,

though other layers may have to be defined to get the appropriate results. Each layer applies

only if preceding layers have been unable to determine the sorting order. In American

English, accented characters must be handled in the second layer and capitalization in the

third layer to achieve appropriate results (e.g., ������%������� precedes ����&�%������� which

precedes �����'%��'���� which precedes ����&'%��'���� (Unicode Consortium 2000:137). The three

layers are illustrated in Figure 61. The outermost layer distinguishes between the base

characters, regardless of case or diacritics. The second layer distinguishes between diacritics,

regardless of case, while the innermost layer makes the case distinction.

102

<collating-sequence>
…
<collating-sequence>
<collating-sequence>
<graphRef target="e"/>
<graphRef target="E"/>

</collating-sequence>
<collating-sequence>
<graphRef target="eacute"/>
<graphRef target="Eacute"/>

</collating-sequence>
</collating-sequence>
…

<collating-sequence>

Figure 61 Level precedence in a collation tree

In addition to the different levels of sorting keys, The Unicode Standard (2000)

indicates other challenges for sorting. “In French sorting, the differences in accents later in

the string are more important than those earlier in the string” (page 138). In French,

characters with no accents sort before those with accents, and characters with the acute

accent ����	���� sort before characters with the circumflex accent ����(����. Thus, ���� '�
������ precedes

����)�
������. However, the differences in accents are compared on the final characters first, so

����)�
����� precedes ���� '�
'����. This can only be accounted for by indicating that the secondary

layer has reverse precedence (from the end of the string to the start instead of from the start

to the end). Each level in the tree indicates how the string should be processed to determine

the correct precedence. The default is start to end processing.

103

Figure 62 Collating tree for French

Figure 63 illustrates the formal notation for the orderings noted in Figure 62.

<collating-sequence>
…
<collating-sequence direction="end-to-start">
<collating-sequence>
<graphRef target="d"/>
<graphRef target="D"/>

</collating-sequence>
</collating-sequence>
<collating-sequence direction="end-to-start">
<collating-sequence>
<graphRef target="e"/>
<graphRef target="E"/>

</collating-sequence>
<collating-sequence>
<graphRef target="eacute"/>
<graphRef target="Eacute"/>

</collating-sequence>
<collating-sequence>
<graphRef target="ecirc"/>
<graphRef target="Ecirc"/>

</collating-sequence>
</collating-sequence>
…

<collating-sequence>

Figure 63 Formal collating tree for French

Since the direction is an attribute of each node in the tree and not a separate level

indicator, the attributes of all nodes at a particular level must agree or it is an error.

104

Another challenge is to allow characters to be ignored at a particular level such that

“the character itself is ignored unless there are no stronger differences in the string” (Unicode

Consortium 2000:138) . Such a case is illustrated in Figure 64.

blackbird
black-bird
blackbirds
black-birds

Figure 64 Ignorable characters

In order to handle the special case of ignorable characters, we need to indicate that

the characters are ignored at a particular level. The character is placed in the correct position

within the tree and then branches are created and labeled as ignored for the number of levels

that are necessary before it would be significant. When a branch is labeled as ignored, its

parent branch must also be labeled as ignored. This is demonstrated in Figure 65.

Figure 65 Collating tree with ignored characters

In Figure 65, there is one more ignored level than the final level of distinction found

so that the ignored character will only be significant after all other levels have been

evaluated. When there is an apostrophe, it will occur before the hyphen but they are ignored

105

unless there are no other distinctions found. The formal equivalent of Figure 65 is illustrated

in Figure 66.

<collating-sequence>
…
<collating-sequence>
<graphRef target="z"/>
<graphRef target="Z"/>

</collating-sequence>
<collating-sequence ignore="yes">
<collating-sequence ignore="yes">
<graphRef target="apostrophe"/>
<graphRef target="hyphen"/>

</collating-sequence>
</collating-sequence>
…

<collating-sequence>

Figure 66 Formal ignorable characters

It is quite possible that I am erring on the side of general expressive power here. If all

languages which use ignored characters treat them as in English where there is no other

distinction that can be made before ignored characters are sorted, then there would be no

need to include all the levels in an ignore branch. However, if a language exists (and I know

of none) where a case distinction is made only after the ignored characters are factored in,

then the level at which the ignored characters apply is important and the current expressive

power is required.

“In traditional German, ö sorts as if it were oe, putting it after od and before

of” (Unicode Consortium 2000:138). This ordering cannot be achieved using a simple listing

of orders (e.g. ��������� ����*���� ���� ����) to obtain the correct result. To achieve the correct ordering of

����*���� using a list of characters would require us to treat ���������� and ���������� as characters. Not only

does this force us into an unnatural analysis of the data, but all combinations of ��������� and the

following letter must be treated as characters in order to achieve the correct result. Taking a

106

cue from the verbal description, we can, instead, equate it to ���������� as a preprocessing step.

This is the way that a German conceives of that segment as well. Figure 67 illustrates the

formal notation for designating an equivalency for sorting purposes.

<ordering>
<name>Alphabetic Order</name>
<sort-equivalencies>
<sort-equivalency>
<graphRef target="oumlaut"/>
<sequence>
<graphRef target="o"/>
<graphRef target="e"/>

</sequence>
</sort-equivalency>

</sort-equivalencies>
<collating-sequence>
…

<collating-sequence>
</ordering>

Figure 67 Formal sort equivalencies

The need for sort equivalencies extends into realms beyond the simple need to equate

certain characters with others. Whole strings of characters may need to be substituted by

another string. For example, when sorting English surnames, ����+����� as a prefix is usually

sorted as though it were ����+������.

In Japanese Katakana, the length mark (�), which “lengthens the vowel of the

preceding character” (Unicode Consortium 2000:139) is sorted based on the previous

character. “For example, after the character � ‘ka’, the � length mark indicates a long ‘a’

and comes after � ‘a’; after the character � ‘ki’, the � length mark indicates a long ‘i’, and

comes after � ‘i’” (Unicode Consortium 2000:139). Thus, ���������� precedes ����������, which

precedes ����������, and ���������� precedes ����������, which precedes ���������� .

107

In order to handle this case, we need to extend our means of designating sort orders to

include environmental conditions. Thus, a character may occur multiple times within the

collating tree, but each instance must have a distinct environment in which it would occur at

that position. This leads us to the analysis in Figure 68

Figure 68 Katakana collation tree

The formal version of this collation tree is shown in Figure 69.

<collating-sequence>
…
<graphRef target="a"/>
<context-graphRef target="length-mark">
<when>
<preceded-by>
<classRef target="a-rhyme"/>

</preceded-by>
</when>

</context-graphRef>
…
<graphRef target="i"/>
<context-graphRef target="length-mark">
<when>
<preceded-by>
<classRef target="i-rhyme"/>

</preceded-by>
</when>

</context-graphRef>
…

</collating-sequence>

Figure 69 Formal Katakana ordering rules

108

Chapter 8: From formalism to publication

The formalism presented in the previous chapters is the notation that would make it

possible for a computer system to read and use a writing system description. But what of the

second audience I am addressing, the human readers? This chapter describes how the system

meets their needs as well.

8.1 Elements needed for publication

If we are to make the description available for users in a publishable form, we need to

address the elements that are required beyond the strictly formal elements of writing system

description. Basic information relevant to any description of a language must also be

included. I address each of these in turn.

8.1.1 Language

The language element identifies the language that the writing system description is

about. This is used to form the title of the work.

The language may be identified by name. It may also be identified by means of codes

that uniquely identify the particular language. This may be from the SIL Ethnologue or

another standard like ISO 639. For example, American English is identified in Figure 70.

109

<language>
<code issuer="Ethnologue">ENG</code>
<code issuer="RFC-1766">en-US</code>
<name>American English</name>

</language>

Figure 70 Formal instance of language identification

8.1.2 Author

An authorship statement includes the name of the author, the author’s affiliation, and

contact information. There may be any number of authors associated with the work.

Figure 71 shows the information associated with a typical authorship statement.

<author>
<fullname>Eric Albright</fullname>
<affiliation>SIL International</affiliation>
<contact>eric_albright@sil.org</contact>

</author>

Figure 71 Formal instance of author

8.1.3 Prose sections

The XML document model contains a number of sections which structure the

publication. These are

• introduction

• history

• illustrative-text

• linguistic units

• graphs

• graphemes

• classes

110

• writing-units

• constraints

• orderings

• relationships

– mapping-set

– relation-set

• issues

• conclusion

• references

The introduction introduces the writing system context. This should include

information about the people who use it. The history is an optional section which introduces

the history of the development of the writing system. It may also be incorporated into the

introduction section. The issues section addresses any known issues that have arisen with the

writing system as it stands. Problem areas should be addressed in this section. The

illustrative text section provides a text written in the orthography along with a translation.

The conclusion is a section for summing up and drawing any conclusions. The references are

gathered into a section at the end.

Although not all of these sections are required for every publication, they have been

made available to provide consistency between descriptions. The formal definitions of

constituents and rules are included within the appropriate sections. Each formal declaration

may contain a prose description to explain the formalism in prose. The content of the prose

sections has been left up to the user so that the author is not bound to a particular set of

elements. Unless specialized elements are required, however, the ones defined by HTML are

111

sufficient for most uses. Figure 72 shows the beginning of a description for the Fijian writing

system. It includes an introduction as well as a brief history of the creation of the writing

system.

<EWSD xml:lang="en-US" name="Fijian" date="2001-04-16">
<language>
<code issuer="Ethnologue">FJI</code>
<name>Fijian</name>
</language>

<author>
<fullname>Eric Albright</fullname>
<affiliation>SIL International</affiliation>
<contact>eric_albright@sil.org</contact>
</author>

<introduction>
<p>Fijian is not a very complicated writing system, being
simply phonemic. However, although Fijian uses letters
which are familiar to users of Roman alphabets, some of
these letters do not have familiar correspondences to the
sound system and thus may surprise the uninitiated.</p>
<p>The Fijian writing system is detailed in this
description. Special note is made of the correspondences
between the graphic symbols and the phonemes they
represent.</p>
<p>The Fijian writing system has been described as
<q>a model of consisitency and simplicity…—in
spite of its peculiar use of the letters
<transcription type="orthographic">b</transcription>,
<transcription type="orthographic">c</transcription>,
<transcription type="orthographic">d</transcription>,
<transcription type="orthographic">g</transcription>, and
<transcription type="orthographic">q</transcription></q>
(Churchward 1973:7-8).</p>

</introduction>

<history>
<p>The Fijian writing system was created by a Wesleyan
missionary, David Cargill, in 1835. Cargill experimented
with several systems before settling on the current system.
This system is simple, economical, and regular. Initial
attempts used digraphs to represent the prenasalized
consonants. But the Fijians, who were just begining to
learn to read, had difficulty with these. Thus the choice
of a single graph instead. (Schütz 1972, 12)</p>

</history>

Figure 72 Introductory prose

112

Prose discussion, which may follow any of the formal components is illustrated in

Figure 73.

<class id="loan">
<name>Loan</name>
<graphRef target="f"/>
<graphRef target="F"/>
<graphRef target="j"/>
<graphRef target="J"/>
<graphRef target="p"/>
<graphRef target="P"/>
<discussion>
<p>The letters
<transcription type="orthographic">f</transcription>,
<transcription type="orthographic">j</transcription>, and
<transcription type="orthographic">p</transcription> and
their capitalized equivalents represent sounds that are
not Fijian and are only used in Fijianized loan words
from English.</p>

</discussion>
</class>

Figure 73 Prose discussion of the formalism

8.2 Rendering the publication

An XSLT stylesheet transforms the machine-readable formal description into a

publication suitable for reading by a human. Figure 74 shows one way that Figure 72 could

be rendered so that it can be made available via the Internet.

113

Figure 74 Rendering of Fijian writing system description introduction

Figure 75 shows a rendering of Figure 73.

Figure 75 Rendering of prose discussion

114

Since the function of the formal components has been clearly delimited, changes in

the format are simple using a stylesheet. Thus, many stylesheets could be created to suit the

needs of different audiences.

8.3 Implementation of example

The implementation of this approach to writing system descriptions is documented in

three appendixes. Chapter gives the complete DTD for the electronic writing system

descriptions described in this thesis. Chapter provides excerpts from a description of the

Fijian writing system. In the interest of saving space, when large segments of the example

seem to repeat a similar structure, a single instance of that structure is given along with

ellipses to indicate where segments have been omitted. This is the document used to produce

Figure 74. Chapter contains a complete XSLT stylesheet for rendering electronic writing

system descriptions that conform to the DTD in Chapter to the HTML format used by

Internet browsers. This is the stylesheet used to produce Figure 74.

115

Chapter 9: Conclusions

9.1 The best descriptions

This thesis has demonstrated the design of a formal framework for describing any

writing system by generalizing the descriptive process for writing systems. It seeks to

improve the descriptions of writing systems and to increase the availability of such

descriptions.

The best linguistic descriptions are meaningful. That is, they are accessible to the

audience. This formal framework seeks to provide the ability to provide writing system

descriptions which are accessible to computational processes as well as to people. The formal

components address the concerns of computational processes, while the descriptive prose

elements work well for the linguists and other interested users.

The best linguistic descriptions are also accurate and comprehensive in that they

completely account for all the known data. Formal descriptions are much more difficult to

write than informal descriptions, for one must think of all the possibilities and leave no

ambiguity. However, they also force one to account for all the data and to think in terms that

are more precise. Thus, formal descriptions tend to be more comprehensive.

116

9.2 Results

An XML DTD has been produced to formalize this framework and to provide

validation of electronic writing system descriptions that follow the framework. Structured

editors for XML documents use the DTD to aid the creator.

The XSLT stylesheet that is provided proves the concept that writing system

descriptions in this formal electronic format can be made available to humans in an

understandable form. However, it is rudimentary and requires feedback from potential users

to make it into a true production-worthy stylesheet.

9.3 Wider implications

The framework for writing formal rules could be used in many other linguistic

descriptions. Thus, this thesis breaks new ground for formal linguistic descriptions of all

types which use rules.

There are many kinds of linguistic description that could benefit from having formal

models for electronic forms. For instance, an electronic description of the phonology and an

electronic version of the lexicon are needed. Until such descriptions are made, the true

potential of a network of linguistic information cannot be reached.

9.4 Recommendations

This framework has been designed with the intention that software would be written

to elicit the information concerning writing systems from an expert so that the complexity of

this framework would be made transparent, perhaps through a series of questions whose

117

answers are put into the appropriate spots within the description. Such software should be

written to provide maximum ease in the information description process.

As for the computer functionality, a library of functions that can be used by any

program to gain access to this information will need to be written and made available for

widespread implementation of this method in computer applications.

118

Appendix A: Electronic writing system description document type definition
<!-- Electronic Writing System Descriptions

Document Type Definition
Written by Eric Albright
This DTD is XML 1.0 Compliant

Copyright (c) 2000-2001 Eric S. Albright. Permission to copy
and to distribute is hereby granted provided that this
notice is included in each copy.

Base model.
-->

<!ENTITY % INHERITED '#IMPLIED' >
<!ENTITY % HREF 'CDATA' >

<!-- ISO dates have the format YYYY-MM-DD -->
<!ENTITY % ISO-date 'CDATA' >
<!ENTITY % Number 'CDATA' >
<!ENTITY % Language 'CDATA' >

<!ENTITY % group 'choice | sequence | catenate' >

<!ENTITY % units ' %group; |
graphemeRef | graphRef |
writing-unitRef | classRef |
linguistic-unitRef |
glyph | coded-unit | key-stroke |
null | any' >

<!-- Electronic Writing System Description (EWSD) -->
<!ELEMENT EWSD (head?,

language,
author*,
introduction?,
history?,
illustrative-text?,
graphs,
graphemes?,
classes?,
writing-units?,
linguistic-units?,
relationships?,
orderings?,

issues?,
conclusion?,
references?) >

<!ATTLIST EWSD

119

xml:lang %Language; #REQUIRED
name CDATA #REQUIRED
date %ISO-date; #REQUIRED >

<!--
name

the name which will be used as the identifier.
Conforming applications may associate the
value of a lang or xml:lang attribute in the
document with this name to determine the
electronic writing system description to be
referenced.

date
date last modified, may serve to determine
the version of this electronic writing system
description -->

<!-- The m-block entity should be redefined to include block
level elements to be used in description.
The m-reference entity should be redefined to include those
elements that need to be identified in references.

-->
<!ENTITY % m-block 'ANY' >
<!ENTITY % m-inline 'ANY' >
<!ENTITY % m-reference 'ANY'>

<!ELEMENT language (code*, name+) >
<!-- multiple codes allow for iso639, IANA,

SIL Ethnologue, or other standard language
codes.
multiple names allow names to be written in
different languages or with different types. -->

<!ATTLIST language
xml:lang %Language; %INHERITED; >

<!ELEMENT code (#PCDATA) >
<!ATTLIST code

issuer CDATA #REQUIRED >
<!--

issuer
the name of the official registration body -->

<!ELEMENT name (#PCDATA) >
<!ATTLIST name

xml:lang %Language; %INHERITED;
type CDATA #IMPLIED >

<!ELEMENT author (fullname, affiliation?, contact?) >
<!ATTLIST author

xml:lang %Language; %INHERITED; >

120

<!ELEMENT fullname (#PCDATA) >
<!ATTLIST fullname

xml:lang %Language; %INHERITED; >

<!ELEMENT affiliation (#PCDATA) >
<!ATTLIST affiliation

xml:lang %Language; %INHERITED; >

<!ELEMENT contact (#PCDATA) >
<!ATTLIST contact

xml:lang %Language; %INHERITED; >

<!ELEMENT introduction (head?, (%m-block;)*, section*) >
<!ATTLIST introduction

xml:lang %Language; %INHERITED; >

<!ELEMENT head (#PCDATA | %m-inline;)* >
<!ATTLIST head

xml:lang %Language; %INHERITED; >

<!ELEMENT section (head, (%m-block;)*, section*) >
<!ATTLIST section

xml:lang %Language; %INHERITED; >

<!ELEMENT history (head?, (%m-block;)*, section*) >
<!ATTLIST history

xml:lang %Language; %INHERITED; >

<!ELEMENT issues (head?, (%m-block;)*, section*) >
<!ATTLIST issues

xml:lang %Language; %INHERITED; >

<!ELEMENT illustrative-text (head?, (%m-block;)*, section*) >
<!ATTLIST illustrative-text

xml:lang %Language; %INHERITED; >

<!ELEMENT conclusion (head?, (%m-block;)*, section*) >
<!ATTLIST conclusion

xml:lang %Language; %INHERITED; >

<!ELEMENT references (head?, reference+) >
<!ATTLIST references

xml:lang %Language; %INHERITED; >

<!ELEMENT reference %m-reference; >
<!ATTLIST reference

xml:lang %Language; %INHERITED; >

<!ELEMENT discussion (%m-block;)* >

121

<!ATTLIST discussion
xml:lang %Language; %INHERITED; >

<!ELEMENT graphs (head?, introduction?, graph+) >
<!ATTLIST graphs

xml:lang %Language; %INHERITED; >

<!ELEMENT graph (name+, discussion?) >
<!ATTLIST graph

id ID #REQUIRED
image %HREF; #IMPLIED >

<!ELEMENT graphRef EMPTY >
<!ATTLIST graphRef

target IDREF #REQUIRED >

<!ELEMENT glyph EMPTY >
<!ATTLIST glyph

name CDATA #IMPLIED
number %Number; #IMPLIED
font CDATA #REQUIRED
img %HREF; #IMPLIED >

<!ELEMENT graphemes (head?, introduction?, grapheme+) >
<!ATTLIST graphemes

xml:lang %Language; %INHERITED; >

<!ELEMENT grapheme (name+, discussion?) >
<!ATTLIST grapheme

id ID #REQUIRED
image %HREF; #IMPLIED >

<!ELEMENT graphemeRef EMPTY >
<!ATTLIST graphemeRef

target IDREF #REQUIRED >

<!ELEMENT classes (head?, introduction?, class+) >
<!ATTLIST classes

xml:lang %Language; %INHERITED; >

<!ELEMENT class (name+,
(graphRef | context-graphRef |
graphemeRef | context-graphemeRef |
classRef | context-classRef)+,
discussion?) >

<!ATTLIST class
id ID #REQUIRED >

122

<!ELEMENT context-graphRef (when) >
<!ATTLIST context-graphRef

target IDREF #REQUIRED >

<!ELEMENT context-graphemeRef (when) >
<!ATTLIST context-graphemeRef

target IDREF #REQUIRED >

<!ELEMENT context-classRef (excluding?, when) >
<!ATTLIST context-classRef

target IDREF #REQUIRED >

<!ELEMENT when (preceded-by?, followed-by?, in?) >

<!ELEMENT classRef (excluding?) >
<!ATTLIST classRef

target IDREF #REQUIRED >

<!ELEMENT writing-units (head?, introduction?,
writing-unit+) >

<!ELEMENT writing-unit (name+, is-made-of, discussion?) >
<!ATTLIST writing-unit

id ID #REQUIRED >

<!ELEMENT writing-unitRef EMPTY >
<!ATTLIST writing-unitRef

target IDREF #REQUIRED >

<!ELEMENT is-made-of (%units;) >

<!ELEMENT linguistic-units (head?, introduction?,
linguistic-unit+) >

<!ATTLIST linguistic-units
xml:lang %Language; %INHERITED; >

<!ELEMENT linguistic-unit (name+, discussion?) >
<!ATTLIST linguistic-unit

type CDATA #REQUIRED
link %HREF; #IMPLIED
id ID #REQUIRED >

<!ELEMENT linguistic-unitRef EMPTY >
<!ATTLIST linguistic-unitRef

target IDREF #REQUIRED >

<!ELEMENT coded-unit EMPTY >
<!ATTLIST coded-unit

bits (8|16|32) #IMPLIED
value %Number; #REQUIRED >

123

<!ELEMENT key-stroke EMPTY >
<!ATTLIST key-stroke

value CDATA #REQUIRED >
<!-- value is a space delimited set of key labels:
These are implementation defined: e.g.
ESCAPE
F1 F2 ... F24
PRINTSCREEN
CONTROL
SHIFT
ALT
A B C ... Z
0 1 ... 9
NUMPAD0 NUMPAD1 ... NUMPAD9
PLUS
MINUS
EQUALS
PERIOD
COMMA
SEMICOLON
APOS
BACKSPACE
INSERT
DELETE
HOME
END
UP
DOWN
LEFT
RIGHT
PAGEDOWN
PAGEUP
SPACE
TAB
-->

<!ELEMENT sequence ((%units;|optional|repeatable)+) >

<!ELEMENT context-sequence ((%units;|optional|repeatable)+,
when) >

<!ELEMENT catenate ((%units;|optional|repeatable)+) >
<!ATTLIST catenate

type (left | right |
down | up |
surround | in) #REQUIRED >

<!ELEMENT choice ((%units;|optional|repeatable)+) >

124

<!ELEMENT optional (%units; | repeatable) >
<!ELEMENT repeatable (%units;) >

<!ELEMENT excluding (%units;) >

<!ELEMENT relationships (head?, introduction?,
(mapping-set | relation-set)+) >

<!ELEMENT mapping-set (head?, introduction?, name+, rule+)>
<!ATTLIST mapping-set

cor1 (linguistic-unit |
grapheme |
graph |
glyph |
coded-unit |
key-code |
writing-unit) #REQUIRED

cor2 (linguistic-unit |
grapheme |
graph |
glyph |
coded-unit |
key-code |
writing-unit) #REQUIRED >

<!ELEMENT rule (correspondence, when*,
discussion?) >

<!ELEMENT relation-set (head?, introduction?, name+, rule+)>
<!ATTLIST relation-set

feature1 CDATA #REQUIRED
feature2 CDATA #REQUIRED >

<!ELEMENT correspondence ((%units;), (%units;)) >

<!ELEMENT preceded-by (%units; | correspondence) >

<!ELEMENT followed-by (%units; | correspondence) >

<!ELEMENT in (%units; | correspondence) >

<!ELEMENT orderings (head?, introduction?, ordering+) >

<!ELEMENT ordering (head?, introduction?, name+,
sort-equivalencies?,
collating-sequence) >

125

<!ELEMENT sort-equivalencies (sort-equivalency+) >
<!ELEMENT sort-equivalency ((graphRef | graphemeRef |

sequence),
(graphRef | graphemeRef | sequence
| null)) >

<!ELEMENT collating-sequence (((graphRef | context-graphRef |
graphemeRef |
context-graphemeRef |
sequence | context-sequence |
collating-sequence),
discussion?)+) >

<!ATTLIST collating-sequence
direction (start-to-end | end-to-start)

'start-to-end'
ignore (yes | no) 'no' >

<!ELEMENT null EMPTY >
<!ELEMENT any EMPTY >

<!-- End of Electronic Writing System Description DTD -->

126

Appendix B: Electronic writing system description example
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="ewsd.xsl"?>
<!DOCTYPE EWSD SYSTEM "ewsd.dtd" [
<!ENTITY font-set "serif, sans-serif">
<!ENTITY eng "ŋ">
<!ENTITY eth "ð">
<!ENTITY opene "ɛ">
<!ENTITY openo "ɔ">
<!ENTITY long "ː">

]>
<EWSD xml:lang="en-US" name="Fijian" date="2001-04-16">
<language>
<code issuer="Ethnologue">FJI</code>
<name xml:lang="en-US">Fijian</name>

</language>

<author>
<fullname>Eric Albright</fullname>
<affiliation>SIL International</affiliation>
<contact>eric_albright@sil.org</contact>

</author>

<introduction>
<p>Fijian is not a very complicated writing system,
being simply phonemic. However, although Fijian uses
letters which are familiar to users of Roman alphabets,
some of these letters do not have familiar correspondences
to the sound system and thus may surprise the
uninitiated.</p>

<p>The Fijian writing system is detailed in this
description. Special note is made of the correspondences
between the graphic symbols and the phonemes they
represent.</p>

<p>The Fijian writing system has been described as <q>a
model of consisitency and simplicity...—in spite of
its peculiar use of the letters
<transcription type="orthographic">b</transcription>,
<transcription type="orthographic">c</transcription>,
<transcription type="orthographic">d</transcription>,
<transcription type="orthographic">g</transcription>, and
<transcription type="orthographic">q</transcription></q>
(Churchward 1973:7-8).</p>

</introduction>

<history>
<p>The Fijian writing system was created by a Wesleyan
missionary, David Cargill, in 1835. Cargill experimented
with several systems before settling on the current system.

127

This system is simple, economical, and regular. Initial
attempts used digraphs to represent the prenasalized
consonants. But the Fijians, who were just begining to
learn to read, had difficulty with these. Thus the choice
of a single graph instead. (Schütz 1972, 12)</p>

...
</history>

<illustrative-text>
<p>Okoya na Vosa sa bula e nai vakatekivu, a rau sa
tiko kei na Kalou ko koya na Vosa, a Kalou ko koya na Vosa.
Sai koya oqo e rau sa tiko vata kei na Kalou mai nai
vakatekivu. Sa cakava na ka kecega ko koya: a sa sega e dua
na ka sa cakavi, me sega ni cakava ko koya. Sa tu vua na
bula; ia na rarama ni tamata na bula. Sa cila mai na rarama
e na butobuto; a sa sega ni kunea na butobuto.</p>

...
</illustrative-text>

<graphs>
<introduction>
<p>The Fijian writing system uses a Roman script and
thus the graphic forms are familiar. The following are the
graphic forms that are used to write Fijian. The
correspondences will be accounted for in a later
section.</p>

...
</introduction>
<graph id="a">
<name>a</name>

</graph>
<graph id="A">
<name>A</name>

</graph>
...

</graphs>

<classes>
...
<class id="loan">
<name>Loan</name>
<graphRef target="f"/>
<graphRef target="F"/>
<graphRef target="j"/>
<graphRef target="J"/>
<graphRef target="p"/>
<graphRef target="P"/>
<discussion>
<p>The letters <transcription
type="orthographic">f</transcription>,

128

<transcription type="orthographic">j</transcription>, and
<transcription type="orthographic">p</transcription> and
their capitalized equivalents represent sounds that are not
Fijian and are only used in Fijianized loan words from
English.</p>

</discussion>
</class>
<class id="native">
<name>Native</name>
<classRef target="letter">
<excluding>
<classRef target="loan"></classRef>

</excluding>
</classRef>

</class>
</classes>

<writing-units>
<writing-unit id="syllable">
<name>syllable</name>
<is-made-of>
<sequence> <optional>
<choice>
<classRef target="Cons"></classRef>
<sequence>
<choice>
<graphRef target="d"/>
<graphRef target="D"/>

</choice>
<choice>
<graphRef target="r"/>
<graphRef target="R"/>

</choice>
</sequence>

</choice> </optional>
<classRef target="Vowel"></classRef> <optional>
<choice>
<graphRef target="i"/>
<graphRef target="I"/>
<graphRef target="u"/>
<graphRef target="U"/>

</choice></optional>
</sequence>

</is-made-of>
<discussion>
<p>Syllables are formed by consonant followed by a
vowel. Only a single consonant cluster may fill the
consonant position (dr). Every syllable ends in a vowel.
The final vowel may be a dipthong.</p>

</discussion>

129

</writing-unit>
</writing-units>

<linguistic-units>
<introduction>
<p>The following are the phonemes of Fijian. The
correspondences between these phonemes and the
graphs of the Fijian writing system will be taken
up in a later section.</p>

...
</introduction>
<linguistic-unit id="phoneme-a" type="phoneme">
<name>a</name>

</linguistic-unit>
<linguistic-unit id="phoneme-a-long" type="phoneme">
<name>a&long;</name>

</linguistic-unit>
...

</linguistic-units>

<relationships>
<mapping-set cor1="graph" cor2="linguistic-unit">
<introduction>
<p>The following rules establish the
correspondences between the graphic symbols and the
phonemes of Fijian. The correspondence is a simple one
where one phoneme corresponds to a single graph and vice
versa as the rules are bi-directional. The environments on
the graphic side only establish the grapho-tactic
constraints of the writing system since there are no other
choices for the correspondences.</p>

...
</introduction>
<name>Reading and Writing</name>
<rule>
<correspondence>
<choice>
<graphRef target="a"/>
<graphRef target="A"/>

</choice>
<choice>
<linguistic-unitRef target="phoneme-a"/>
<linguistic-unitRef target="phoneme-a-long"/>

</choice>
</correspondence>

</rule>
...
<rule>
<correspondence>
<choice>

130

<graphRef target="b"/>
<graphRef target="B"/>

</choice>
<linguistic-unitRef target="phoneme-mb"/>

</correspondence>
<when>
<followed-by>
<classRef target="Vowel"></classRef>

</followed-by>
</when>

</rule>
...

</mapping-set>
<mapping-set cor1="graph" cor2="coded-unit">
<name>Unicode encoding</name>
<rule>
<correspondence>
<graphRef target="A"/>
<coded-unit bits="16" value="65"/>

</correspondence>
</rule>
...

</mapping-set>
<mapping-set cor1="graph" cor2="glyph">
<name>Rendering</name>
<rule>
<correspondence>
<graphRef target="A"/>
<glyph font="&font-set;" number="65"/>

</correspondence>
</rule>
...

</mapping-set>
<relation-set feature1="lower case" feature2="upper case">
<name>Case relation between lower and upper case</name>
<rule>
<correspondence>
<graphRef target="a"/>
<graphRef target="A"/>

</correspondence>
</rule>
...

</relation-set>
</relationships>

<orderings>
<ordering>
<name>Alphabetical Order</name>
<collating-sequence>
<collating-sequence>

131

<graphRef target="a"/>
<graphRef target="A"/>

</collating-sequence>
...
<discussion>
<p>The alphabetical order of treats the distinction
between letters as a primary difference and the
distinction between case as a secondary difference.</p>

</discussion>
</collating-sequence>

</ordering>
</orderings>

<references>
<reference>Churchward, C. Maxwell. 1973. <title>A New
Fijian Grammar</title>. Suva, Fiji: Government Press.

</reference>
...

</references>
</EWSD>

132

Appendix C: Electronic writing system description stylesheet
<?xml version='1.0'?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:msxsl="urn:schemas-microsoft-com:xslt"
xmlns:functions="urn:EricAlbright:EWSD"
version="1.0">

<msxsl:script language="JScript" implements-prefix="functions">
function Hex(nodelistSource) {
return parseInt(nodelistSource.item(0).text).toString(16);

}
function Char(nodelistSource) {
return String.fromCharCode(

parseInt(nodelistSource.item(0).text));
}

</msxsl:script>

<!-- Has not been defined in stylesheet yet! -->
<xsl:template match="*">
<xsl:message terminate="yes">
<xsl:value-of select="name()"/> not handled in stylesheet yet!

</xsl:message>
</xsl:template>

<!-- Root ++ -->

<xsl:template match="/">
<HTML>
<HEAD>
<TITLE>
<xsl:call-template name="make-title"/>

</TITLE>
<STYLE>
BODY {
font-family: Arial Unicode MS;

}

H1, H2, H3 {
font-family:Arial;
margin-bottom:0;

}

p {
margin-top: .25em;
margin-bottom: 0;

}

133

p.authorLine {
margin-top: 0;
margin-bottom: 0;

}

span.text, span.title {
font-style: italic;

}
span.linguistic-unit {
font-family: Arial Unicode MS;

}
a:link {
color:blue; text-decoration:none;

}
a:visited {
color:blue; text-decoration:none;

}

</STYLE>
</HEAD>
<BODY>
<xsl:apply-templates/>

</BODY>
</HTML>

</xsl:template>

<xsl:template match="name | introduction |
discussion | author | head">

<xsl:apply-templates/>
</xsl:template>

<!-- Headings +++ -->

<xsl:template match="EWSD">
<H1>
<xsl:call-template name="make-title"/>

</H1>
<xsl:apply-templates select="child::*[not(self::language

or self::head)]"/>
</xsl:template>

<xsl:template match="EWSD/introduction |
history | illustrative-text |
graphs | graphemes |
classes | writing-units |
linguistic-units |
relationships | orderings |
issues | conclusion |

134

references">
<H2>
<xsl:choose>
<xsl:when test="head">
<xsl:apply-templates select="head"/>

</xsl:when>
<xsl:when test="self::introduction">
<xsl:text>Introduction</xsl:text>

</xsl:when>
<xsl:when test="self::history">
<xsl:text>History</xsl:text>

</xsl:when>
<xsl:when test="self::illustrative-text">
<xsl:text>Illustrative Text</xsl:text>

</xsl:when>
<xsl:when test="self::graphs">
<xsl:text>Graphs</xsl:text>

</xsl:when>
<xsl:when test="self::graphemes">
<xsl:text>Graphemes</xsl:text>

</xsl:when>
<xsl:when test="self::classes">
<xsl:text>Classes</xsl:text>

</xsl:when>
<xsl:when test="self::writing-units">
<xsl:text>Writing Units</xsl:text>

</xsl:when>
<xsl:when test="self::linguistic-units">
<xsl:text>Linguistic Units</xsl:text>

</xsl:when>
<xsl:when test="self::relationships">
<xsl:text>Relationships</xsl:text>

</xsl:when>
<xsl:when test="self::orderings">
<xsl:text>Orderings</xsl:text>

</xsl:when>
<xsl:when test="self::issues">
<xsl:text>Issues</xsl:text>

</xsl:when>
<xsl:when test="self::conclusion">
<xsl:text>Conclusion</xsl:text>

</xsl:when>
<xsl:when test="self::references">
<xsl:text>References</xsl:text>

</xsl:when>
<xsl:otherwise>
<xsl:message terminate="yes">Undefined
<xsl:value-of select="name()"/> default head.</xsl:message>

</xsl:otherwise>
</xsl:choose>

135

</H2>
<xsl:apply-templates/>
</xsl:template>

<!-- Author +++ -->

<xsl:template match="fullname | affiliation | contact">
<P class="authorLine">
<xsl:apply-templates/>

</P>
</xsl:template>

<!-- Reference +++ -->

<xsl:template match="reference">
<P>
<xsl:call-template name="make-anchor"/>
<xsl:apply-templates/>

</P>
</xsl:template>

<!-- Orderings ++ -->

<xsl:template match="ordering">
<H3>
<xsl:call-template name="make-anchor"/>
<xsl:for-each select="name">
<xsl:if test="position() != 1">
<xsl:text>, </xsl:text>

</xsl:if>
<xsl:apply-templates/>

</xsl:for-each>
</H3>
<xsl:apply-templates select="*[not(self::name)]"/>

</xsl:template>

<xsl:template match="order-layer">
<P>
<xsl:call-template name="make-anchor"/>
<xsl:apply-templates/>

</P>
</xsl:template>

<xsl:template match="order-rule">
<P style="margin-bottom:0; margin-top:0;">
<xsl:attribute name="title">
<xsl:apply-templates mode="verbose"/>

</xsl:attribute>
<xsl:call-template name="make-anchor"/>
<xsl:apply-templates select="follows"/>

136

<xsl:apply-templates select="graphemeRef | graphRef"/>
<xsl:apply-templates select="precedes"/>

</P>
</xsl:template>

<xsl:template match="sort-equivalencies">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="sort-equivalency">
<xsl:apply-templates select="*[position()=1]"/>
<xsl:text>=</xsl:text>
<xsl:apply-templates select="*[position()>1]"/>

</xsl:template>

<xsl:template match="collating-sequence">
<P>
<xsl:attribute name="style">text-indent:<xsl:value-of
select="count(parent::collating-sequence)"/>em</xsl:attribute>

<xsl:text>[</xsl:text>
<xsl:if test="position()=1 and child::collating-sequence">
<xsl:text> </xsl:text>

</xsl:if>
<xsl:apply-templates select="*[not(self::discussion)]"/>
<xsl:text>] </xsl:text>
</P>
<xsl:apply-templates select="discussion"/>

</xsl:template>

<xsl:template match="mapping-set | relation-set">
<H3><xsl:value-of select="name[1]"/></H3>
<xsl:apply-templates select="introduction | rule | discussion"/>

</xsl:template>

<xsl:template match="rule">
<P style="margin-bottom:0; margin-top:0em;">
<xsl:attribute name="title">
<xsl:apply-templates mode="verbose"/>

</xsl:attribute>

<xsl:call-template name="make-anchor"/>
<xsl:apply-templates/>

</P>
</xsl:template>

<xsl:template match="correspondence">
<xsl:apply-templates select="*[position()=1]"/>

<xsl:text> ≘ </xsl:text>

137

<xsl:apply-templates select="*[position()>1]"/>
</xsl:template>

<xsl:template match="coded-unit">
<xsl:value-of select="@value"/>
<xsl:text> (x</xsl:text>
<xsl:value-of select="functions:Hex(@value)"/>

<xsl:text>)</xsl:text>
</xsl:template>

<xsl:template match="glyph">
<xsl:if test="@name">
<xsl:text>name: </xsl:text>
<xsl:value-of select="@name"/>

</xsl:if>
<xsl:if test="@number">
<xsl:text>glyph identifier: </xsl:text>
<xsl:value-of select="@number"/>

</xsl:if>
<xsl:apply-templates select="@img"/>

</xsl:template>

<xsl:template match="glyph/@img">
<xsl:text> (</xsl:text>

<xsl:text>)</xsl:text>

</xsl:template>

<xsl:template match="grapheme">
<P>
<xsl:call-template name="make-anchor"/>
<xsl:for-each select="name">
<xsl:if test="position() != 1">
<xsl:text>, </xsl:text>

</xsl:if>
<xsl:apply-templates/>

</xsl:for-each>
</P>

</xsl:template>

<xsl:template match="graph">
<P>
<xsl:call-template name="make-anchor"/>
<xsl:if test="@image">

<xsl:text> —<!--em dash--> </xsl:text>

</xsl:if>

<xsl:for-each select="name">
<xsl:if test="position() != 1">

138

<xsl:text>, </xsl:text>
</xsl:if>
<xsl:apply-templates/>

</xsl:for-each>
</P>

</xsl:template>

<xsl:template match="graphRef | context-graphRef">
<xsl:for-each select="//graph[@id=current()/@target]">

<xsl:attribute name="title">the graph named
<xsl:value-of select="name"/></xsl:attribute>
<xsl:value-of select="name"/>

</xsl:for-each>

<xsl:apply-templates/>
</xsl:template>

<xsl:template match="class">
<P class="class">
<xsl:call-template name="make-anchor"/>

<xsl:for-each select="name">
<xsl:if test="position() > 1">
<xsl:text> (</xsl:text>

</xsl:if>

<xsl:attribute name="title">
<xsl:choose>
<xsl:when test="position() = 1">
<xsl:text>the class named </xsl:text>

</xsl:when>
<xsl:otherwise>
<xsl:text>also known as </xsl:text>

</xsl:otherwise>
</xsl:choose>
<xsl:apply-templates select="."/>

</xsl:attribute>
<xsl:apply-templates select="."/>

<xsl:if test="position() > 1">
<xsl:text>)</xsl:text>

</xsl:if>
</xsl:for-each>

<xsl:text> ∋ </xsl:text>

139

<xsl:for-each select="*[not(self::name or self::discussion)]">
<xsl:if test="position() != 1">
<xsl:text>, </xsl:text>

</xsl:if>
<xsl:apply-templates select="."/>

</xsl:for-each>
</P>
<xsl:apply-templates select="discussion"/>

</xsl:template>

<xsl:template match="classRef | context-classRef">
<xsl:if test="excluding | when">
<xsl:text>(</xsl:text>

</xsl:if>
<xsl:for-each select="//class[@id=current()/@target]">

<xsl:attribute name="title">the class named
<xsl:value-of select="name"/></xsl:attribute>
<xsl:value-of select="name"/>

</xsl:for-each>
<xsl:apply-templates/>
<xsl:if test="excluding | when">
<xsl:text>)</xsl:text>

</xsl:if>
</xsl:template>

<xsl:template match="writing-unit">
<P class="writing-unit">
<xsl:call-template name="make-anchor"/>

<xsl:for-each select="name">
<xsl:if test="position() > 1">
<xsl:text>(</xsl:text>

</xsl:if>

<xsl:attribute name="title">
<xsl:choose>
<xsl:when test="position() = 1">
<xsl:text>the writing unit named </xsl:text>

</xsl:when>
<xsl:otherwise>
<xsl:text>also known as </xsl:text>

</xsl:otherwise>
</xsl:choose>
<xsl:apply-templates select="."/>

</xsl:attribute>
<xsl:apply-templates select="."/>

<xsl:if test="position() > 1">

140

<xsl:text>)</xsl:text>
</xsl:if>

</xsl:for-each>

<xsl:apply-templates select="*[not(self::name or
self::discussion)]"/>

</P>
<xsl:apply-templates select="discussion"/>

</xsl:template>

<xsl:template match="writing-unitRef">
<xsl:for-each select="//writing-unit[@id=current()/@target]">

<xsl:attribute name="title">the writing unit named
<xsl:value-of select="name"/></xsl:attribute>
<xsl:value-of select="name"/>

</xsl:for-each>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="is-made-of">

<xsl:text> ≘ </xsl:text>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="linguistic-unit">
<P class="writing-unit">
<xsl:call-template name="make-anchor"/>

<xsl:for-each select="name">
<xsl:if test="position() > 1">
<xsl:text>(</xsl:text>

</xsl:if>

<xsl:attribute name="title">
<xsl:choose>
<xsl:when test="position() = 1">
<xsl:text>the </xsl:text>
<xsl:value-of select="parent::*/@type"/>
<xsl:text> named </xsl:text>

</xsl:when>
<xsl:otherwise>
<xsl:text>also known as </xsl:text>

</xsl:otherwise>
</xsl:choose>
<xsl:apply-templates select="."/>

</xsl:attribute>

141

<xsl:choose>
<xsl:when test="parent::*/@type='phoneme'">
<xsl:text>/</xsl:text>

</xsl:when>
<xsl:when test="parent::*/@type='phone'">
<xsl:text>[</xsl:text>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="parent::*/@type"/>
<xsl:text> (</xsl:text>

</xsl:otherwise>
</xsl:choose>
<xsl:apply-templates select="."/>
<xsl:choose>
<xsl:when test="parent::*/@type='phoneme'">
<xsl:text>/</xsl:text>

</xsl:when>
<xsl:when test="parent::*/@type='phone'">
<xsl:text>]</xsl:text>

</xsl:when>
<xsl:otherwise>
<xsl:text>)</xsl:text>

</xsl:otherwise>
</xsl:choose>

<xsl:if test="position() > 1">
<xsl:text>)</xsl:text>

</xsl:if>
</xsl:for-each>
<xsl:if test="@link">
 more info...

</xsl:if>
</P>
<xsl:apply-templates select="discussion"/>

</xsl:template>

<xsl:template name="lu">

<xsl:attribute name="title">
<xsl:text>the </xsl:text>
<xsl:value-of select="@type"/>
<xsl:text> </xsl:text>
<xsl:value-of select="."/>

</xsl:attribute>

<xsl:choose>
<xsl:when test="@type='phoneme'">
<xsl:text>/</xsl:text>

</xsl:when>

142

<xsl:when test="@type='phone'">
<xsl:text>[</xsl:text>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="@type"/>
<xsl:text> (</xsl:text>

</xsl:otherwise>
</xsl:choose>

<xsl:value-of select="."/>
<xsl:choose>
<xsl:when test="@type='phoneme'">
<xsl:text>/</xsl:text>

</xsl:when>
<xsl:when test="@type='phone'">
<xsl:text>]</xsl:text>

</xsl:when>
<xsl:otherwise>
<xsl:text>)</xsl:text>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<xsl:template match="linguistic-unitRef">
<xsl:for-each select="//linguistic-unit[@id=current()/@target]">

<xsl:call-template name="lu"/>

</xsl:for-each>

</xsl:template>

<xsl:template match="graphemeRef">
<xsl:for-each select="//grapheme[@id=current()/@target]">

<xsl:attribute name="title">the grapheme named
<xsl:value-of select="name"/></xsl:attribute>
<xsl:value-of select="name"/>

</xsl:for-each>

</xsl:template>

<xsl:template match="excluding">

<xsl:text> ∌ </xsl:text>

<xsl:apply-templates/>

</xsl:template>

143

<xsl:template match="when">

<xsl:text> / </xsl:text>

<xsl:apply-templates select="preceded-by"/>
<xsl:text> _ </xsl:text>
<xsl:apply-templates select="followed-by"/>
<xsl:apply-templates select="in"/>

</xsl:template>

<xsl:template match="preceded-by | followed-by | in">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="preceded-by" mode="verbose">
<xsl:apply-templates mode="verbose"/>

</xsl:template>

<xsl:template match="followed-by" mode="verbose">
<xsl:apply-templates mode="verbose"/>

</xsl:template>

<xsl:template match="in" mode="verbose">
<xsl:apply-templates mode="verbose"/>

</xsl:template>

<xsl:template match="must-precede">
<xsl:text> ≺ </xsl:text>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="must-precede" mode="verbose">
<xsl:apply-templates mode="verbose"/>

</xsl:template>

<xsl:template match="must-follow">
<xsl:text> ≻ </xsl:text>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="must-follow" mode="verbose">
<xsl:apply-templates mode="verbose"/>

</xsl:template>

<xsl:template name="make-title">
<xsl:choose>
<xsl:when test="/EWSD/head">
<xsl:apply-templates select="/EWSD/head"/>

</xsl:when>

144

<xsl:otherwise>
<xsl:apply-templates select="/EWSD/language/name"/>
<xsl:text> Writing System Description</xsl:text>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<xsl:template name="make-anchor">
<A>
<xsl:attribute name="id">
<xsl:value-of select="generate-id()"/>

</xsl:attribute>

</xsl:template>

<xsl:template match="null">
empty-set

</xsl:template>

<xsl:template match="any">
full-set

</xsl:template>

<!-- Groups +++ -->

<xsl:template match="sequence">

<xsl:text>(</xsl:text>

<xsl:for-each select="child::*">
<xsl:if test="position() != 1">

<xsl:text>, </xsl:text>

</xsl:if>
<xsl:apply-templates select="."/>

</xsl:for-each>

<xsl:text>)</xsl:text>

</xsl:template>

<xsl:template match="choice">

<xsl:text>(</xsl:text>

<xsl:for-each select="child::*">
<xsl:if test="position() != 1">

<xsl:text> | </xsl:text>

145

</xsl:if>
<xsl:apply-templates select="."/>

</xsl:for-each>

<xsl:text>)</xsl:text>

</xsl:template>

<xsl:template match="optional">
<xsl:apply-templates/>
<xsl:if test="not(repeatable)">

<xsl:text>?</xsl:text>

</xsl:if>

</xsl:template>

<xsl:template match="repeatable">
<xsl:apply-templates/>

<xsl:text>+</xsl:text>

</xsl:template>

<xsl:template match="optional/repeatable">
<xsl:apply-templates/>

<xsl:text>*</xsl:text>

</xsl:template>

<!-- +++++++++++++++++++++++++ User Defined +++++++++++++ -->
<xsl:template match="p">
<P>

<xsl:apply-templates/>
</P>

</xsl:template>

<xsl:template match="example">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="text">

<xsl:apply-templates/>

<xsl:text> </xsl:text>
</xsl:template>

<xsl:template match="gloss | q">

146

<xsl:call-template name="alternate-quote"/>
</xsl:template>

<xsl:template match="transcription">
<xsl:choose>
<xsl:when test="@type='phonetic'">
<xsl:text>[</xsl:text>

</xsl:when>
<xsl:when test="@type='phonemic'">
<xsl:text>/</xsl:text>

</xsl:when>
<xsl:when test="@type='orthographic'">
<xsl:text>〈<!-- left pointing

angle bracket --></xsl:text>
</xsl:when>

</xsl:choose>

<xsl:text>﻿ ﻿<!--
thin space --></xsl:text>

<xsl:apply-templates/>
<xsl:text>﻿ ﻿<!--

thin space --></xsl:text>

<xsl:choose>
<xsl:when test="@type='phonetic'">
<xsl:text>]</xsl:text>

</xsl:when>
<xsl:when test="@type='phonemic'">
<xsl:text>/</xsl:text>

</xsl:when>
<xsl:when test="@type='orthographic'">
<xsl:text>〉<!-- right pointing

angle bracket --></xsl:text>
</xsl:when>

</xsl:choose>
</xsl:template>

<xsl:template name="alternate-quote">
<xsl:param name="contents"><xsl:apply-templates/></xsl:param>

<xsl:choose>
<xsl:when test="0=count(ancestor::q |

ancestor::soCalled |
ancestor::gloss) mod 2">

<xsl:text>“<!--ldquote--></xsl:text>
<xsl:copy-of select="$contents"/>
<xsl:text>”<!--ldquote--></xsl:text>

</xsl:when>
<xsl:otherwise>
<xsl:text>‘<!--lsquote--></xsl:text>

147

<xsl:copy-of select="$contents"/>
<xsl:text>’<!--lsquote--></xsl:text>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<xsl:template match="title">

<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

148

Bibliography

Antworth, Evan L. 1990. PC-KIMMO: A Two-level Processor for Morphological Analysis.
Dallas, TX: Summer Institute of Linguistics.

and J. Randolph Valentine. 1998. “Software for Doing Field Linguistics.” in
Lawler, John M. and Helen Aristar Dry, eds. Using Computers in Linguistics: A
Practical Guide. London, New York: Routledge. 170–196.

Armstrong, Robert G., ed. 1986. Orthographies of Nigerian Languages: Manual IV. Lagos,
Nigeria: National Language Centre, Federal Ministry of Education.

Banjo, Ayo, ed. 1985. Orthographies of Nigerian Languages: Manual III. Lagos, Nigeria:
National Language Centre, Federal Ministry of Education.

Bazell, Charles Ernest. 1956. “The Grapheme.” Litera. 3:43–46.

Becker, Joseph D. 1984. “Multilingual word processing.” Scientific American. 251(1):96–
107.

Bender, Marvin L., Sydney W. Head and Roger Cowley. 1976. “The Ethiopian Writing
System.” in Bender, Marvin L., J. Donald Bowen, Robert L. Cooper and Charles A.
Ferguson, eds. Language in Ethiopia. London: Oxford University Press. 120–129.

Birnbaum, David J., Mavis Cournane and Peter Flynn. 1999. “Using the TEI Writing System
Declaration (WSD).” Computers and the Humanities. 33(1–2):49–57.

Booij, Geert E. 1987. “The Reflection of Linguistic Structure in Dutch spelling.” in
Luelsdorff, Philip A., ed. Orthography and Phonology. Amsterdam, Philadelphia:
John Benjamins Publishing. 215–224.

Bright, William. 1996. “The Devanagari Script.” in Daniels, Peter T. and William Bright,
eds. The World’s Writing Systems. New York: Oxford University Press. 384–390.

Butt, David. 1996. “Theories, Maps and Descriptions: An Introduction.” in Hasan, Ruqaiya,
Carmel Cloran and David Butt, eds. Functional Descriptions: Theory in Practice.
Amsterdam, Philadelphia: John Benjamins Publishing. Current Issues in Linguistic
Theory. 121. xv–xxxv.

149

Campbell, George L. 1997. Handbook of Scripts & Alphabets. London, New York:
Routledge.

Carney, Edward. 1994. A Survey of English Spelling. London, New York: Routledge.

Correll, Sharon. 2000. Graphite: An Extensible Rendering Engine for Complex Writing
Systems. Paper presented at 17th International Unicode Conference: www.sil.org/
computing/graphite/IUC17_paper.PDF.

Coulmas, Florian. 1989. The Writing Systems of the World. Oxford: Blackwell.

Daniels, Peter T. 1992. “Is a Structural Graphemics Possible?” in Brend, Ruth M., ed. The
Eighteenth LACUS Forum 1991. Lake Bluff, IL: LACUS. 528–537.

1995. “Reply to Herrick.” in Powell, Mava Jo, ed. The Twenty-first LACUS
Forum 1994. Chapel Hill, NC: LACUS. 425–431.

1996. “The Study of Writing Systems.” in Daniels, Peter T. and William
Bright, eds. The World’s Writing Systems. New York: Oxford University Press. 3–20.

and William Bright, eds. 1996. The World’s Writing Systems. New York:
Oxford University Press.

DeFrancis, John. 1989. Visible Speech: the Diverse Oneness of Writing Systems. Honolulu:
University of Hawaii Press.

Derwing, Bruce L., Tom M. S. Priestly and Bernard L. Rochet. 1987. “The Description of
Spelling-to-sound Relationships in English, French and Russian: Progress, Problems
and Prospects.” in Luelsdorff, Philip A., ed. Orthography and Phonology.
Amsterdam, Philadelphia: John Benjamins Publishing. 31–52.

Diringer, David. 1968. The Alphabet: A Key to the History of Mankind. 3rd edition. New
York: Funk & Wagnalls.

Dürst, Martin J. and François Yergeau, eds. 1999. Character Model for the World Wide Web.
World Wide Web Consortium: www.w3.org/TR/1999/WD-charmod-19991129.

Gelb, I. J. 1963. A Study of Writing. Revised edition, first published 1952. Chicago:
University of Chicago Press.

Gleason, H. A. 1961. An Introduction to Descriptive Linguistics. Revised edition. New York
et alibi: Holt, Rinehart and Winston.

150

Grant, Bruce K. 1982. A Guide to Korean Characters: Reading and Writing Hangǔl and
Hanja. Second Revised Edition. Elizabeth, NJ, Seoul, Korea: Hollym.

Haas, William. 1983. “Determining the Level of a Script.” in Coulmas, Florian and Konrad
Ehlich, eds. Writing in Focus. Berlin, New York, Amsterdam: Mouton. Trends in
Linguistics. Studies and Monographs. 24. 15–29.

Hall, Robert A. 1960. “A Theory of Graphemics.” Acta Linguistica Hafniensa. 8:13–20.

1964. Introductory Linguistics. Philadelphia: Chilton Books.

Halliday, M. A. K. 1996. “On Grammar and Grammatics.” in Hasan, Ruqaiya, Carmel
Cloran and David Butt, eds. Functional Descriptions: Theory in Practice.
Amsterdam, Philadelphia: John Benjamins Publishing. Current Issues in Linguistic
Theory. 121. 1–38.

Harris, Roy. 1995. Signs of Writing. London, New York: Routledge.

Hartell, Rhonda L., ed. 1993. Alphabets of Africa. Dakar: UNESCO.

Henderson, Leslie. 1984. “Writing Systems and Reading Processes.” in Henderson, Leslie,
ed. Orthographies and Reading: Perspectives from Cognitive Psychology,
Neuropsychology, and Linguistics. London, Hillsdale, NJ: Lawrence Erlbaum
Associates. 11–24.

Herrick, Earl Myron. 1974. “A Taxonomy of Alphabets and Scripts.” Visible Language. 8:5–
32.

1995a. “Of Course a Structural Graphemics is Possible!” in Powell, Mava Jo,
ed. The Twenty-first LACUS Forum 1994. Chapel Hill, NC: LACUS. 413–424.

1995b. “Reply to Daniels’s Reply.” in Powell, Mava Jo, ed. The Twenty-first
LACUS Forum 1994. Chapel Hill, NC: LACUS. 432–440.

Hill, Archibald A. 1967. “The Typology of Writing Systems.” in Austin, William M., ed.
Papers in Linguistics in Honor of Léon Dostert. The Hague, Paris: Mouton. Janua
Linguarum Series Maior. 25. 93–99.

Hockey, Susan. 1998. “Textual Databases.” in Lawler, John M. and Helen Aristar Dry, eds.
Using Computers in Linguistics: A Practical Guide. London, New York: Routledge.
101–137.

151

Hosken, M., B. Hallissy, W. Cleveland, S. Correll and A. Ward. 2000. Graphite Description
Language. Version 1.900. Dallas: SIL International.

Huttar, George L. 1987. “The Afaka Script: An Indigenous Creole Syllabary.” in Fleming,
Ilah, ed. The Thirteenth LACUS Forum 1986. Lake Bluff, IL: LACUS. 167–177.

Kannaiyan, V. 1960. Scripts In and Around India. Madras, India: Government Museum.

Matthiessen, Christian and Christopher Nesbitt. 1996. “On the Idea of Theory-Neutral
Descriptions.” in Hasan, Ruqaiya, Carmel Cloran and David Butt, eds. Functional
Descriptions: Theory in Practice. Amsterdam, Philadelphia: John Benjamins
Publishing. Current Issues in Linguistic Theory. 121. 39–83.

Mountford, John. 1990. “Language and Writing-Systems.” in Collinge, N. E., ed. An
Encyclopedia of Language. New York: Routledge, Chapman & Hall. 701–739.

1996. “A Functional Classification.” in Daniels, Peter T. and William Bright,
eds. The World’s Writing Systems. New York: Oxford University Press. 627–632.

Nakanishi, Akira. 1980. Writing Systems of the World: Alphabets, Syllabaries, Pictograms
(Sekai no Moji). Rutland, VT: Charles E. Tuttle Co.

Nunberg, Geoffrey. 1990. The Linguistics of Punctuation. Stanford, CA: Center for the
Study of Language and Information. CSLI Lecture Notes. 18.

Pike, Kenneth L. 1947. Phonemics. Ann Arbor: University of Michigan Press.

1982. Linguistic Concepts: An Introduction to Tagmemics. Lincoln, London:
University of Nebraska Press.

Pulgram, Ernst. 1951. “Phoneme and Grapheme: A Parallel.” Word. 7:15–20.

1965. “Graphic and Phonic Systems: Figurae and Signs.” Word. 21:208–224.

Roop, D. Haigh. 1997. An Introduction to the Burmese Writing System. Manoa, HI:
University of Hawaii at Manoa. Southeast Asia Paper. (41).

Sampson, Geoffrey. 1985. Writing Systems: a Linguistic Introduction. Stanford, CA:
Stanford University Press.

152

Schaefer, Ronald P. 1987. An Initial Orthography and Lexicon for Emai: an Edoid
Language of Nigeria. Bloomington, IN: Indiana University Linguistics Club. Studies
in African Grammatical Systems. 5.

Sgall, Petr. 1987. “Towards a Theory of Phonemic Orthography.” in Luelsdorff, Philip A.,
ed. Orthography and Phonology. Amsterdam, Philadelphia: John Benjamins
Publishing. 1–30.

Simons, Gary F. 1989. “The Computational Complexity of Writing Systems.” in Brend, Ruth
M. and David G. Lockwood, eds. The Fifteenth LACUS Forum 1988. Lake Bluff, IL:
LACUS. 538–553.

1998. “The Nature of Linguistic Data and the Requirements of a Computing
Environment for Linguistic Research.” in Lawler, John M. and Helen Aristar Dry,
eds. Using Computers in Linguistics: A Practical Guide. London, New York:
Routledge. 10–25.

and John V. Thomson. 1998. “Multilingual Data Processing in the CELLAR
Environment.” in Nerbonne, John, ed. Linguistic databases. Stanford, CA: Center for
the Study of Language and Information. 203–234.

Smalley, William A., ed. 1964. Orthography Studies. London: United Bible Societies.

Sperberg-McQueen, C. M. and Lou Burnard, eds. 1999. Guidelines for Electronic Text
Encoding and Interchange. Revised Reprint. Chicago, Oxford: Text Encoding
Initiative.

Sproat, Richard. 2000. A Computational Theory of Writing Systems. Cambridge: Cambridge
University Press. Studies in Natural Language Processing.

Tadadjeu, Maurice and Etienne Sadembouo, eds. 1984. translated by Emmanuel Chia.
General Alphabet of Cameroon Languages (Alphabet General Des Langues
Camerounaises). Bilingual edition. Yaoundé, Cameroon: University of Yaoundé.
PROPELCA. 1.

Unicode Consortium. 2000. The Unicode Standard. Version 3.0. Reading, MA: Addison-
Wesley.

Venezky, Richard L. 1962. A Computer Program for Deriving Spelling to Sound
Correlations. Masters thesis. Cornell University.

153

1965. A Study of English Spelling-to-Sound Correspondences on Historical
Principles. Dissertation. Stanford: Stanford University.

1967a. “English Orthography: Its Graphical Structure and its Relation to
Sound.” Reading Research Quarterly. 2.

1967b. “The Basis of English Orthography.” Acta Linguistica. 10:145–159.

1970. The Structure of English Orthography. The Hague: Mouton. Janua
Linguarum. Series Minor. 82.

Weir, Ruth H. 1967. “Some Thoughts on Spelling.” in Austin, William M., ed. Papers in
Linguistics in Honor of Léon Dostert. The Hague, Paris: Mouton. Janua Linguarum
Series Maior. 25. 169–177.

Wijk, Axel. 1966. Rules of Pronunciation for the English Language: An Account of the
Relationship between English Spelling and Pronunciation. London: Oxford
University Press. Language and Language Learning. 12.

Williamson, Kay, ed. 1983. Orthographies of Nigerian Languages: Manual II. Lagos,
Nigeria: National Language Centre, Federal Ministry of Education.

154

Eric Albright received his Bachelor of Arts degree in Communications from Bryan
College in 1994. After working as a computer programmer for a year in the SIL translation
department, he began his study of linguistics at the Texas SIL. After a year, he took a job as a
computer programmer in the industry.

In 1998, he joined SIL International and resumed his linguistic studies. As an expert
in XML and XSL technologies, he has made numerous contributions to XML related projects
within SIL International.

In December 2000, he presented a paper on his preliminary thesis research at the
Linguistic Exploration Workshop on Web-Based Language Documentation and Description.

He will be taking a field assignment with SIL in August 2001.

155

This page intentionally left blank.

