
Proposal for a TEI workgroup on the ‘end of word’ problem in Sanskrit

Sanskritists who work with electronic texts find themselves facing a serious problem: the
way in which the language is written does not separate all words. Traditionally, scribes
made no word divisions at all, but it has been standard practice since the mid-to-late
19th century to introduce them wherever they do no orthographic violence. However, the
nature of the script means that many words continue to be joined together.

For the convenience of non-Sanskritists the following discussion uses Roman translit-
eration, but the actual issue involves the Devanāgarı̄ script in which Sanskrit is normally
written. Devanāgarı̄ is a syllabary, in which a syllable consists of zero or more consonants
followed by one vowel followed optionally by m. or h. (anusvāra or visarga).1 If a word ends
with a consonant, it therefore has to share a syllable with the next word, so that āsı̄d rājā
(‘there was a king’) is written ā - sı̄ - drā - jā. To make matters worse, sandhi (phonolo-
gical change at word boundaries) may fuse two consecutive vowels together, so that, even
ignoring orthography, the words can no longer be divided — for example tathā api (‘even
so’) becomes tathāpi, where the single vowel ā is shared by two inseparable words. This is
a feature which affects even Romanised versions of Sanskrit texts.

These usages present no problems for display, and the Unicode character block for
Devanāgarı̄ (U+0900–U+097F) is — with some marginal exceptions — capable of properly
representing Sanskrit. However, for almost any kind of analysis it is necessary for the
computer to ‘know’ where words begin and end, and it has long been clear that we need
to find a solution to the problem of hidden word junctions. Various ad hoc solutions have
been used by people who have typed up Sanskrit texts, but none is at all satisfactory.2

The solution cannot be implemented at the level of character encoding. It is sometimes
suggested that the ‘āsı̄d rājā problem’ could be solved by using a special Unicode character
such as zero width space (U+200B) to indicate the hidden word junction, but this would in
fact prevent the correct glyph from being formed. Even if this were not so, it is obvious that
one cannot hope to use character encoding to indicate that the vowel of the syllable thā in
tathāpi represents original ā + a. Clearly the solution belongs at the level of markup, and
this leads one very quickly towards XML and the Text Encoding Initiative.

XML permits the problem to be solved cleanly. A tag can be defined to bracket the
syllable in question, and to provide the analysed equivalent either as attribute text or as
a child element:

āsı̄<foo bar="d rā">drā</foo>jā
or

āsı̄<foo>drā<bar>d rā</bar></foo>jā.3

We are therefore proposing that the TEI establish a workgroup to examine this issue,
with the remit of devising a small tag-set for use in the encoding of Sanskrit texts. The
workgroup should consider whether this tag-set should be completely Sanskrit-specific, or

1 This is a slight simplification, deliberately omitting certain ‘optional’ features such as Vedic accents.
These do not, however, affect the principle as stated here.

2 Almost all involve the use of Roman script, which would find little favour in India. One Sanskrit text
published in India (the Jaiminı̄yabrāhman. a edited by Raghu Vira and Lokesh Chandra) attempts a
partial Devanāgarı̄ solution, as in ‘ þjApEtr̂ vAṽdm̂ ag} eko _ŝ>yt nA˚y\ EŠtFy\ p[ymAn,. s ẽ"tAh\
vAv þTmo _jEn¯ŷ , ah\ Ź̃ďo _-Mŷ , aE-t E-vn̂ md̂ ihA˚yA3 iEt. s &y{"t. so _˚yd̂ aA(mno _@ŷ uĄrto
>yAyŝ Etďd̂ ap[yt̂. ’ (2.369). But such usage would be unlikely to be any more acceptable to Indian
scholars than outright Romanisation, and it does not even solve the problem of vowel sandhi.

3 Exactly the same issues occur within compound words, a feature which is heavily used in Sanskrit. If a
scholar wished to create a text in which compounds were separated into their component members, he/she
would be able to use use similar tags to do so. The name gan. eśa, for example, is formed from gan. a-ı̄śa; it
could be encoded as ga<foo bar="n. a-ı̄">n. e</foo>śa or ga<foo>n. e<bar>n. a-ı̄</bar></foo>śa.

1



whether it would be appropriate to employ a more generalised approach which could be
adapted for use with any language that happened to pose similar problems. (Japanese may
be a case in point.) We envisage that all discussion would be undertaken by email. Since
the questions to be debated are very technical and very restricted in scope, we believe that
it should be possible to complete the discussion and issue our recommendations within a
period of six months.

As members of the workgroup we propose the following:
John Smith, University of Cambridge (john.smith@oriental.cam.ac.uk)
Raymond Doctor, University of Pune (dictdoc@hotmail.com)
Christian Wittern, TEI (wittern@kanji.zinbun.kyoto-u.ac.jp)
Lou Burnard, TEI (Lou.Burnard@oucs.ox.ac.uk)
Syd Bauman, TEI (Syd Bauman@Brown.edu)
Jost Gippert, University of Frankfurt (gippert@em.uni-frankfurt.de)
Peter Schreiner, University of Zurich (peterschreiner@lycos.com)
Bob Hueckstedt, University of Virginia (rah2k@virginia.edu)
Felix Sasaki, University of Bielefeld (felix.sasaki@uni-bielefeld.de)

We would also welcome the participation of Madhav Deshpande (University of Michigan)
and Yves Codet (University of Toulouse-Le Mirail), but efforts to get in touch with them
have so far not succeeded.

It is worth observing that this proposal is not made in a vacuum. Work is currently
under way in Cambridge and Pune (Poona), India, to develop software that will work
intelligently with this type of markup. Named Vinayaka, the program will allow the
user to edit Sanskrit text, and to indicate the position of hidden word divisions (and
compound divisions); these will be written to the output file as XML markup. Vinayaka
will ‘understand’ enough Sanskrit to be able to suggest the correct division in the majority
of cases. It will be able to handle the whole of TEI Lite, together with a small number of
extra tags. It will also function as a web browser plugin, to encourage scholars to adopt
TEI markup when making texts available via the Web. Vinayaka will be distributed as
freeware. A specimen passage from the Sanskrit epic Mahābhārata has been prepared in
Devanāgarı̄ using tags of the type proposed along with (skeletal) TEI markup. It can be
seen at http://bombay.oriental.cam.ac.uk/john/ilsp/statement.html.4

John D. Smith
University of Cambridge

Raymond Doctor
University of Pune

January 11, 2004

4 ILSP was the working title for the program now named Vinayaka — the initials stood for InterLinear
Sanskrit Processor.

2


