1 ODD SUBSET
1.1 Languages and Character Sets

The documents which users of these Guidelines may wish to encode encompass all kinds of material, potentially
expressed in the full range of written and spoken human languages, including the extinct, the non-existent, and
the conjectural. Because of this wide scope, special attention has been paid to two particular aspects of the
representation of linguistic information often taken for granted: language identification, and character encoding.

Even within a single document, material in many different languages may be encountered. Human culture, and the
texts which embody it, is intrinsically multilingual, and shows no sign of ceasing to be so. Traditional philologists
and modern computational linguists alike work in a polyglot world, in which code-switching (in the linguistic
sense) and accurate representation of differing language systems constitute the norm, not the exception. The
current increased interest in studies of linguistic diversity, most notably in the recording and documentation of
endangered languages, is one aspect of this long standing tradition. Because of their historical importance, the
needs of endangered and even extinct languages must be taken into account when formulating Guidelines and
recommendations such as these.

Beyond the sheer number and diversity of human languages, it should be remembered that in their written forms
they may deploy a huge variety of scripts or writing systems. These scripts are in turn composed of smaller units,
which for simplicity we term here characters. A primary goal when encoding a text should be to capture enough
information for subsequent users of it correctly to identify both language, script, and constituent characters. In
this chapter we address this requirement, and propose recommended mechanisms to indicate the languages, scripts
and characters used in a document or a part thereof.

Identification of language is dealt with in [I.I.1. Language identification] In summary, it recommends the use
of pre-defined identifiers for a language where these are available, as they increasingly are, in part as a result of
the twin pressures of an increasing demand for language-specific software and an increased interest in language
documentation. Where such identifiers are not available or not standardized, these Guidelines recommend a way
of documenting language identifiers and their significance, in the same way as other metadata is documented in
the TEI Header.

Standardization of the means available to represent characters and scripts has moved on considerably since the
publication of the first version of these Guidelines. At that time, it was essential to explicitly document the
characters and encoded character sets used by almost any digital resource if it was to have any chance of being
usable across different computer platforms or environments, but this is no longer the case. With the availability of
the Unicode standard, almost 100,000 different characters representing almost all of the world’s current writing
systems are available and usable in any XML processing environment without formality. Nevertheless, however
large the number of standardized characters, there will always be a need to encode documents which use non-
standard characters and glyphs, particularly but not exclusively in historical material. Furthermore, the full
potential of Unicode is still not yet realised in all software which users of the Guidelines are likely to encounter.
The second part of this chapter therefore discusses in some detail the concepts and practice underlying this
standard, and also introduces the methods available for extending beyond it, which are more fully discussed
in chapter <CEW06».

1.1.1 Language identification
Identification of the language a document or part thereof is written in is a crucial requirement for many envisioned

usages of an electronic document. The TEI therefore accomodates this need in the following way:

e A global attribute 1ang is defined for all TEI elements. Its value identifies the language used.

e The TEI Header has a section set aside for the information about the languages used in a document, for
details see «5.4.2 Language Usage».

The value of the attribute lang identifies the language using a coded value. For maximal compatibility with
existing processes, modelling this value in the following way is recommended (this parallels the modelling of
xml:lang):

e The identifier for the language should be constructed as in RTF 3066 or its successor. This same identifier
has to be used to identify the <language> element in the TEI header.

The current draft of [Tags for Identifying Languages| proposes the following mechanism for constructing an
identifier (tag) for languages as administered by the Internet Assigned Numbers Authority (IANA) by assembling
this tag from a sequence of subtags separated by the hyphen (-, U+002D) character. It gives the language (possibly
further identified with a sublanguage), a script and a region for this language, each possibly followed by a variant
subtag.

e The identifier consists of at least one ‘primary’ subtag, it maybe followed by one or more ‘extended’ subtags.

e Languages are identified by a language subtag, which may be a two letter code taken from ISO 639-1 or a
three letter code taken from ISO 639-2.

e ISO 639-2 reserves for private use codes the range ’qaa’ through ’qtz’. These codes should be used for
non-registered language subtags.

e A single letter primary subtag "x" indicates that the whole language tag is privately used.

e Extended language subtags must begin with the letter "s". They must follow the primary subtag and precede
subtags that do define other properties of the language. The order is significant.

e 4 character subtags are interpreted as script identifiers taken from ISO 15924

e Region subtags can be either two letter country codes taken from ISO 3166 (with exceptions) or 3 digit
codes from the UN Standard Country Codes for Statistical Use.

e Variant subtags may follow any of the above, but must precede private use extensions.

e Private use extensions are separated from the other subtags by the single letter subtag "x", which must be
followed by at least one subtag. They might consist of several subtags separated with "-", but may not
exceed a length of 32 characters.

° — de (German)
— ja (Japanese)
— zh (Chinese)
° — zh-Hant (Traditional Chinese)

— en-Latn (English written in Latin script)

— sr-Cyrl (Serbian written with Cyrillic script)

e - zh-Hans-CN (Simplified Chinese for the PRC)

— sr-Latn-891 (Serbian, Latin script, Serbia and Montenegro)

e — 7h-SG (Chinese for Singapore)
— de-DE (German for Germany)

e - zh-CN (Chinese in China, no script given)

— zh-Latn (Chinese transcribed in the Latin script)

e - de-CH-x-phonebook (phonebook collation for Swiss German)
— zh-s-min (Min sub-language of Chinese)

— zh-s-min-s-nan-Hant-CN (Southern variant of Min sublanguage as used in China, written with
traditional Characters)

zh-Latn-x-pinyin (Chinese transcribed in the Latin script using the Pinyin system)

It should be noted that capitalization given here follows established convention (e.g. capital letters for country
coded, small letters for language codes), but RTF 3066 does not ascribed any meaning to differences in
capitalization.

As can be seen, both RTF 3066 and ISO 639-2 provide extensions that can be employed by private convention.
The constructs mentioned above can thus be used to generate identifiers for any language, past and present, in any
used in any area of the World. If such private extensions are used within the context of the TEI, they should be
documented within the <language> element of the TEI header, which might also provide a prose description of
the language described by the language tag.

While language, region and script can be adequately identified using this mechanism, there is only very rough
provision to express a dimension of time for the language of a document; those codes provided (e.g. "grc"
for "Greek, Ancient (to 1453)" in ISO 639-2) might not reflect the segments appropriate for a text at hand.

Text encoders might express the time window of the language used in the document by means of the extension

mechanism defined in RTF 3066 and relate that to a <date> or <dateRange> in the corresponding <language>
sectio of the TEI header.

Equivalences to language identifiers by other authorities can be given in the <language> section as well, but no
formal mechanism for doing so has been defined.

The scope of the language identification is extending to the whole subtree of the document anchored at the element
that carries the lang attribute, including all elements and all attributes where a language might apply.This will
exclude all attributes where a non-textual data type has been specified, for example tokens, boolean values or
predefined value lists.References

Phillips, Addison.Davis, Mark, Tags for Identifying Languages2004-04-08, Internet Draft, proposed revision for
RTF3066 http://xml.coverpages.org/draft-phillips-langtags-02a.txt

Cover, Robin: Language Identifiers in the Markup Contexthttp://xml.coverpages.org/
languageldentifiers.html

Tim Bray Jean Paoli C. M. Sperberg-McQueen Eve Maler - Second Edition Francois Yergeau - Third Edition:
Extensible Markup Language (XML) 1.0 (Third Edition) W3C Recommendation 04 February 2004 http:
//www.w3.org/TR/2004/REC-xm1-20040204/

1.1.2 Characters and Character Sets

All document encoding has to do with representing one thing by another in an agreed and systematic way.
Applied to the smallest distinctive units in any given writing system, which for the moment we may loosely
call ‘characters’, such representation raises surprisingly complex and troublesome issues. The reasons are partly
historical and partly to do with conceptual unclarities about what is involved in identifying, encoding, processing
and rendering the characters of a natural language.

Historical considerations When the first methods of representing text for storage or transmission by machines
were devised, long before the development of computers, the overriding aim was to identify the smallest set of
symbols needed to convey the essential semantic content, and to encode that symbol set in the most economical
way that the storage or transmission media allowed. The initial outcome were systems that encoded only such
content as could be expressed in upper case letters in the Latin script, plus a few punctuation marks and some
‘control characters’ needed to regulate the storage and transmission devices. Such encodings, originally developed
for telegraphy, strongly influenced the way the pioneers of computing conceived of and implemented the handling
of text, with consequences that are with us still.

For many years after the invention of computers, the way they represented text continued to be constrained by
the imperative to use expensive resources with maximal efficiency. Even when storage and processing costs
began their dramatic fall, the Anglo-centric outlook of most hardware designers and software engineers hampered
initiatives to devise a more generous and flexible model for text representation. The wish to retain compatability
with ‘legacy’ data was an additional disincentive. Eventually, tension in East Asia between commitment to
technological progress and the inability of existing computers to cope with local writing systems led to decisive
developments. Japanese, Korean and Chinese standards bodies, who long before the advent of computers had
been engaged in the specification of character sets, joined with computer manufacturers and software houses to
devise ways of mapping those character sets to numeric encodings and processing the resulting text data.

Unfortunately, in the early years there was little or no co-ordination among either the national standards bodies
or the manufacturers concerned, so that although commercial necessity dictated that these various local standards
were all compatible with the representation of US-American English, they were not straightforwardly compatible
with one another. Even within Japan itself there emerged a number of mutually incompatible systems, thanks
to a mixture of commercial rivalry, disagreements about how best to manage certain intractable problems,
and the fact that such pioneering work inevitably involved some false starts, leading to incompatibilities even
between successive products of the same bodies. Roughly at the same time, and for similar reasons, multiple
and incompatible ways of representing languages that use Cyrillic scripts were devised, along with methods of
encoding ancient writing systems which inevitably could not aim for compatibility with other writing systems
apart from basic Latin script. Many of the earliest projects that fed into the TEI were shaped in this developmental
phase of the computerised representation of texts, and it was also the context in which SGML was devised and
finalized.

SGML had of necessity to offer ways of coping with multiple writing systems in multiple representations; or
rather, it provided a framework within which SGML-compliant applications capable of handling such multiple
representations might be developed by those with sufficient financial and personnel resources (such as are seldom
found in academia). Earlier editions of these Guidelines offered advice on character set and writing system issues
addressed to the condition of those for whom SGML was the only feasible option. That advice must now be
substantially altered because of two closely-related developments: the availability of the ISO/Unicode character
set as an international standard, and the emergence of XML and related technologies which are committed to the
theory and practice of character representation which Unicode embodies.

http://xml.coverpages.org/draft-phillips-langtags-02a.txt
http://xml.coverpages.org/languageIdentifiers.html
http://xml.coverpages.org/languageIdentifiers.html
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml-20040204/

Terminology and key concepts Before the significance of Unicode and the implications of the association
between XML and Unicode can be adequately explained, it is necessary to clarify some key concepts and attempt
to establish an adequately precise terminology for them.

The word ‘character’ will not of itself take us very far towards greater terminological precision. It tends to be used
to refer indiscriminately both to the visible symbol on a page and to the letter or ideograph which that symbol
represents, two things that it is essential to keep conceptually distinct. The visible symbol obviously has some
aspects by which we interpret it as representing one character rather than another; but its appearance may also
be significantly determined by features that have no effect on our notion of which character in a writing system
it represents. A familiar instance is the lower case ‘a’, which in printed texts may be represented either by a
‘single storey’ symbol in the examples from Baskerville SemiBold or Century) or by a ‘two storey’
version (as in [figure T]in the examples from ArialRegular or Andale Mono Regular). We say that the single and
double-storey symbols both represent one and the same the same abstract character‘a’ using two different glyphs.
Similarly, an uppercase ‘A’ in a serif typeface has additional strokes that are absent from the same letter when
printed using a sans-serif typeface, so that once again we have differing glyphs standing for the same abstract
character. The distinction between abstract characters and glyphs is fundamental to all machine processing of
documents.

In most scholarly encoding projects, the accurate recording of the abstract characters which make up the text is
of prime importance, because it is the essential prerequisite of digitizing and processing the document without
semantic loss. In many cases (though there are important exceptions, to be touched on shortly) it may not
be necessary to encode the specific glyphs used to render those abstract characters in the original document.
An encoding that faithfully registers the abstract characters of a document allows us to search and analyse our
document’s content, language and structure and access its full semantics. That same encoding, however, may not
contain sufficient information to allow an exact visual representation of the glyphs in the source text or manuscript
to be recreated.

The importance of this distinction between information content and its visual representation is not always
immediately apparent to people unused to the specific complexities of text handling by machine. Such users
tend to ask first what (in order of conceptual priority) should actually be their very last question: how do I get a
physical image that looks like character x in my source document to appear on to the screen or the output page?
Their first question should in fact be: how can I get an abstract representation of character x into my encoded
document in a way that will be universally and unambiguously identifiable, no matter what it happens to look like
in printout or on any particular display? And occasionally the response they receive as a result of their misguided
initial question is a custom ‘solution’ that satisfies their immediate rendering wishes at the price of making their
underlying document unintelligible to other users (or even to the original user in other times and places) because
it encodes the abstract character in an idiosyncratic way.

That said, there will certainly be documents or projects where it is a matter of scholarly significance that the
compositor or scribe chose to represent a given abstract character using one particular glyph or set of strokes
rather than a semantically-equivalent but visually distinct alternative, and in that case the specific appearance of
the form will have to be encoded on one way or another. But that encoding need not (and in most cases will not)
involve a notation that visually resembles the original, any more than italicised text in an original document will
be represented by the use of italic characters in the encoded version.

A collection of the abstract characters needed to represent documents in a given writing system is known as
a character set, and the character set or character repertoire of a processing or rendering device is the set of
abstract characters that it is equipped to recognise and handle appropriately. There is, however, a subtle distinction
between these two parallel uses of the same term, involving one more key concept which it is essential to grasp.
The character set of a document (or the writing system in which it is recorded) is purely a collection of abstract
characters. But the character set of a computing device is a set of abstract characters which have been mapped
in a well-defined way to a set of numbers or code-points by which the device represents those abstract characters
internally. It can therefore be referred to as a coded character set, meaning a set of abstract characters each of which
has been assigned a numerical code point (or in some instances a sequence of code-points) which unambiguously
identifies the character concerned.

It is now possible to use this terminology to say what Unicode is: it is a coded character set, devised and
actively maintained by an international public body, where each abstract character is identified by a unique name
and assigned a distinctive code-point. Although only Unicode is mentioned here explicitly, it should be noted
that the character repertoire and assigned code-points of Unicode and the ISO standard 10646 are identical and
maintained in a way that ensures this continues to be the case. Unicode is distinguished from other, earlier and
co-existing coded character sets by its (current and potential) size and scope; its built-in provision for (in practical
terms) limitless expansion; the range and quality of linguistic and computational expertise on which it draws; the
commitment in principle (and to an increasing degree in practice) to implement it by all important providers of
hardware and software worldwide; and the stability, authority and accessibility it derives from its status as an
international public standard.

Abstract characters, glyphs and encoding scheme design The distinction between abstract characters and
glyphs can be crucial when devising an encoding scheme. Users performing text retrieval, searching or
concordancing will expect the system to recognise and treat different glyphs as instances of the same character;
but when perusing the text itself they may well expect to see glyph variants preserved and rendered. When
encoding a pre-existing text, the encoder must determine whether a particular letter or symbol is a character or a
glyphic variant. A model of the relationship between characters and glyphs has been developed within the Unicode
Consortium and the ISO working group SC251 and will form the base for much future standards work.

The model makes explicit the distinction between two different properties of the components of written language:

e their content, i.e. its meaning and phonetic value (represented by a character)

e their graphical appearance (represented by a glyph)

When searching for information, a system generally operates on the content aspects of characters, with little or no
attention to their appearance. A layout or formatting process, on the other hand, must of necessity be concerned
with the exact appearance of characters. Of course, some operations (hyphenation for example) require attention
to both kinds of feature, but in general the kind of text encoding described in these Guidelines tends to focus on
content rather than appearance (see further «6.3 Highlighting and Quotation»).

An encoder wishing to record information about which glyphs are present in a given document may do so at either
or both of two levels:

o the level of character encoding, using an appropriate Unicode code point to represent the glyph concerned

e the markup level, with the glyph indicated via appropriate elements and/or attributes

The encoding practice adopted may be guided by, among other things, an assessment of the most frequent uses
to which the encoded text will be put. For example, if recognition of identical characters represented by a variety
of glyphs is the main priority, it may be advisable to represent the glyph variations at markup level, so that the
character value can be immediately exposed to the indexing and retrieval software. Plainly, an encoding project
will need to consider such issues carefully and embody the outcome of their deliberations in local manuals of
procedure to ensure encoding consistency. Using Unicode code points to represent glyph information requires
that such choices be documented in the TEI Header. Such documentation does cannot of itself guarantee proper
display of the desired glyph but at least makes the intention of the encoder discoverable.

At present the Unicode Standard does not offer detailed specifications for the encoding of glyph variations.
These Guidelines do give some recommendations; some discussion of related matters is given in «Chapter 18
Transcription of Primary Sources», and «Chapter 25 Representation of non-standard Characters and Glyphs»
offers some features for the definition of variant glyphs.

Entry of characters. Text characters may be entered into a document using any of three methods, in any
convenient combination. First, where suitable input facilities make this possible, the characters concerned may be
entered directly into the document, either by normal keystrokes or by the use of one of the Input Method Editors
(IMEs) commonly used for the entry of ideographic characters. This is most likely to be convenient where the
display used for text entry and/or the printer used to produce output for proof-reading purposes is capable of
rendering the characters concerned using correct and readily identifiable glyphs. Where such easily checkable
rendering is not available, or where there is no suitable method of inputting certain characters directly, they may
be input by one of two possible forms of indirect notation or ‘reference’.

The first form of reference is a Numeric Character Reference (NCR), which takes the general form &#D; where
D is an integer representing the code-point of the character in base 10, or &#xH;, where H is the code-point in
hexadecimal notation. This has the advantage that no declaration of what this notation means is required anywhere
in the document instance or its DTD. Every XML processor is capable of recognising NCRs and replacing them
with the required code-point value without needing access to any additional data. The disadvantage of NCRs as
a means of entering, representing and proofing character data is that most human beings find them anything but
‘readable’ and it is all too easy for the wrong character to be entered in error and retained undetected.

The second form of reference is a Character Entity Reference (though, as explained below, this should not be
taken to imply that such entities constitute a ‘type’ that could be distinctively recognised by a processing system).
Character entity references can (and indeed should) have names whose significance is apparent to humans, but
each and every entity name has to be associated with its replacement (which as explained below should be a
character value, possibly in the form of a NCR) via a formal declaration in the document’s internal or external
subset. For a large number of characters defined by Unicode and commonly used in documents, there are ISO
entity sets declaring mnemonic names which should be used wherever feasible: XML compatible character entity
declarations using ISO names and suitable for inclusion into the subset are available on the TEI websites.

Where characters are not defined in Unicode and so have to be assigned both a local code-point and a local entity
name of the project’s choosing (see [I.1.2.6.2. Non Unicode characters in XML documents| below) it is highly
desirable to follow the same nomenclature principles as ISO and to emulate the practice in the ISO character entity

declarations of appending a string giving the character a unique descriptive name as a comment to the actual entity
declaration. In addition, where different groups or projects are working on texts with geographical, historical,
linguistic or other similarities that give rise to common issues of character encoding, it is highly advisable in the
interests of consistency that they should consult one another when devising entity names. The TEI mailing list
may provide a suitable first point of contact for such consultations. Further advice on the matter of locally-defined
characters is contained in «Chapter 25 Representation of non-standard Characters and Glyphs.»

Output of characters Rendering of the encoded text is a complicated process that depends largely on the
purpose, external requirements, local equipment and so forth, it is thus outside the scope of coverage for these
Guidelines.

It might however nevertheless be helpful to put some of the terminology used for the rendering process in the
context of the discussion of this chapter. As was mentioned above, Unicode encodes abstract characters, not
specific glyphs. For any process that makes characters visible, however, concrete, specifically designed glyph
shapes have to be used. For a printing process, for example, these shapes describe exactly at which point ink has
to be put on the paper and which areas have to be left blank. If we want to print a character from the Latin script,
besides the selection of the overall glyph shape, this process also requires that a specific weight of the font has
been selected, a specific size and to what degree the shape should be slanted. Beyond infividual characters, the
overall typesetting process also follows specific rules of how to calculate the distance between characters, how
much whitespace occurs between words, at which points line breaks might occur and so forth.

If we concern ourselves only with the rendering process of the characters themselves, leaving out all these other
parameters, we will realize that of all the information required for this process, only a small amount will be drawn
from the encoded text itself. This information is the code-point used to encode the character in the document.
With this information, the font selected for printing will be queried to provide a glyph shape for this character.
Some modern font formats (e.g. OpenType) do implement a sophisticated mapping from a code-point to the
glyph selected, which might take into account surrounding characters (to create ligatures where necessary) and
the language or even area this character is printed for to accomodate different typesetting traditions and differences
in the usage of glyphs.

A TEI document might provide some of the information that is required for this process for example by identifying
the linguistic context with the lang attribute. The selection of fonts and sizes is usually done in a stylesheet, while
the actual layout of a page is determined by the typesetting system used. Similarily, if a document is rendered for
publication on the Web, information of this kind can be shipped with the document in a stylesheetThe World Wide
Web Consortium provides recommendations for two standard stylesheet languages: either CSS or XSL could be
used for this purpose..

Unicode and XML The devisers of the XML standard took the view that Unicode should be the only means
of representing abstract characters which conformant XML processors were obliged to support. That certainly
does not preclude the use of other character encoding schemes or character sets in documents which are to be
handled by XML processors, but it does mean that all the abstract characters which are encoded as characters (as
distinct from being represented indirectly via markup) in an XML document must either possess an assigned code
point within the public Unicode standard, or be assigned a code-point devised by and specific to the local project,
taken from a reserved range set aside by the standard expressly for this purpose, the so-called Private Use Areas
or PUAs. For the vast majority of projects to which these Guidelines are applicable, the Unicode standard will
already offer code-points for all the abstract characters their documents employ, and so the requirement that all
such characters should be resolvable by XML processors to Unicode code-points will not involve any definition
or use of PUA code-points. Indeed, such projects are not obliged by their choice of XML to use Unicode in
their documents. Provided they correctly declare at the requisite points any non-Unicode coded character set they
may use, ensure that all their XML processors support their declared encoding, and then consistently employ that
encoding in strict conformity with their declarations, they need not consciously concern themselves with Unicode
unless and until they feel it is appropriate to do so.

Non-Unicode character sets and XML processors There are, however, strict limits to the way conformant
XML processors handle documents whose character set is not Unicode, and unless these limits are understood it
is likely that projects not yet ready to commit to Unicode across the board will run into unexpected and baffling
problems as they attempt to operate with their legacy character encodings. First, it must be repeated that nothing
in the XML standard requires conformant processors to handle non-Unicode documents. But even if there were
any actual processors which on that basis refused to process non-Unicode documents, that would not limit their
usefulness as severely as might at first appear. The reason is that there is a way of internally representing Unicode
code-points (explained further [I.1.2.9.1. Encoding errors related to UTF-8| below) where there is no detectable
difference between a document which is actually encoded in ASCII employing only 7-bit values and one which
is encoded in Unicode but which happens to contain only the abstract characters encompassed by the 7-bit ASCII
standard. And the XML standard specifies that this way of representing Unicode is the one which processors must
assume as the default for any document that does not explicitly declare an encoding. At a stroke, this provision
ensures that all pure 7-bit ASCII encoded documents can be processed without further ado by all conformant XML
processors. Add to this the provision, also within the XML standard, that allows any Unicode code-point to be

indirectly specified using only 7-bit ASCII characters via a Numeric Character Reference (NCR), and the upshot
is that all documents in non-Unicode encodings which can be pre-processed to rewrite any characters outside the
7-bit ASCII range as Unicode code-points in NCR notation (a simple batch procedure for which software is readily
available) can be handled even by processors which have no inbuilt support for any encoding other than Unicode.

In fact, every XML processor so far released has implemented methods, specified in the standard though not
mandatory, which allow the processing of documents in at least some non-Unicode character sets. Such processors
include in their documentation a statement of the non-Unicode encodings they support, and the use of such an
encoding must be declared to the processor in the correct way.

To avoid confusion when taking advantage of such encoding support, it is first of all essential to grasp that an
encoding declaration in an XML document is indeed simply a declaration: it is not an incantation that magically
converts the document that follows into the encoding concerned. It is a common error to think that simply declaring
a document’s encoding to be, say ISO-8859-1 (or for that matter UTF-8 or UTF-16, the representations of Unicode
for which support is mandatory) is sufficient to ‘make it so’. Such a declaration is useless unless the document
that follows actually is encoded strictly in conformance with the declaration. Some of the circumstances in which
that may not in fact be the case are outlined in[I.1.2.9. Issues arising from the internal representations of Unicode]
below. Secondly, an encoding declaration does not somehow switch an XML processor into a mode where it
works entirely in the declared encoding for as long as the declaration is in scope. On the contrary, all it does is
instruct the processor to pass its input through a filter that immediately converts all the code-points in the declared
encoding into their Unicode counterparts; from that point onwards the document as seen by all subsequent stages
of processing is actually in Unicode, even though that may not be apparent to the user. Thirdly, this invariable
internal conversion has a crucial consequence: the fact that a processor can successfully accept a document in
a non-Unicode encoding does not mean that it will necessarily convert any output it may produce back into the
declared input encoding. Internally, the document has been converted to and processed in Unicode, and there
is nothing in the XML standard that requires the reverse conversion to be performed at the output stage. Most
processors go beyond the standard by offering a facility to output in various encodings: but whether it is available
and how to use it must be ascertained from the processor’s documentation. Should it be unavailable or unreliable,
the output may need to be post-processed through a character convertor to restore the original encoding, and again
such software is freely available and easy to use.

Non Unicode characters in XML documents In the cases considered in the preceding section, there was a
suitable Unicode code-point corresponding to each abstract character contained in the non-Unicode character
set of the input document. In such instances, the mandatory internal conversion to Unicode carried out by the
processor can be more or less transparent to a user who wishes to continue to work with a non-Unicode character
set. Things become rather different when the non-Unicode character set contains abstract characters for which
there is no code point in the Unicode standard, or when a project that is attempting to work in Unicode throughout
finds that it needs to represent abstract characters not currently provided for in the Unicode standard. Here, a
significant difference between SGML and XML emerges in a rather troublesome way.

Following their agenda to devise a subset of SGML that would be significantly easier to implement, the authors of
the XML specification decided that one particular type of entity available in SGML, known as an internal SDATA
entity, should not be carried over into XML. It would be idle to question that decision here, but its consequences
for the handling of abstract characters for which there is no Unicode definition were significant.

The procedures recommended in earlier versions of these Guidelines for encoding, processing and exchanging
what we might call locally defined abstract characters were reliant on the availability of entities declared as of
type SDATA, but that type is not supported in XML, and there is therefore no ready equivalent for XML-based
projects to the recommendations previously offered. In essence, when an SGML parser encounters a reference
to an entity of type SDATA, it supplies to the application which it is servicing the name of that entity, as found
in the document, plus a pointer to a location somewhere on the local system, and what is present at that location
may in turn allow or instruct the application to do one of a number of things, including looking up the entity
name in a table and deriving information about the referenced entity which can trigger specific behaviours in the
application appropriate to the processing of that abstract character. There is however no way to make an XML
parser do anything of the kind in response to an entity reference. Entities in XML are really only of two basic
types, parsed and unparsed. Unparsed entities are of no relevance here. References to parsed entities in an XML
document result in only one kind of behaviour: when they appear in the parser’s input stream, the parser expects
to be able to resolve them by locating a declaration in the document’s internal or external subset which maps the
entity name to its replacement text. The parser then inserts that replacement text into the document in place of the
entity reference, which is discarded without trace. The act of replacement is not notified to the application, except
where it fails because the entity is undeclared or the declaration is in some way defective (in which case the parser
signals a fatal error and stops.)

Though for explanatory convenience much XML-related documentation, including these Guidelines, refers
specifically to Character Entities and Character Entity References, a character entity in XML is not a distinct
‘type’ in the sense that ‘type’ is understood in Computer Science terminology, for example when referring to the
type of an attribute. Hence there is no way in which editing or other software can check that the replacement to
be inserted is indeed a single character or its equivalent rather than an arbitrary chunk of text, possibly including

markup. A character entity is simply a general entity whose replacement text happens to be declared as a character
value or a NCR representing that value. This has two important consequences if it is proposed to use such an entity
reference to stand for a character that has no Unicode equivalent. First, the entity name reference will disappear at
an early stage in the parse and be replaced by the declared value of the entity, so that no processing which requires
access in the parsed document to the entity reference as originally entered is possible. Secondly, if a character
entity is to be used as a true equivalent to a normal character, and consequently be employed at all points in a
document where a single character could legitimately occur (apart from in element and attribute names, where no
references of any kind are allowed) then it is essential that its replacement value indeed be pure character data.
If the replacement value of the entity were to contain any markup, or a processing instruction, there would be
many places in a document where simple character data would be legitimate, but where the substitution of markup
or some other replacement could cause the document to become invalid or malformed. Taken together, these
considerations mean that the transparent use of a CER to stand for a non-Unicode character in an XML document
is simply not possible.

Special aspects of Unicode character definitions

Compatibility characters The principles of Unicode are judiciously tempered with pragmatism. This means,
among other things, that the actual repertoire of characters which the standard encodes, especially those parts
dating from its earlier days, include a number of items which on a strict interpretation of the Unicode Consortium’s
theoretical approach should not have been regarded as abstract characters in their own right. Some of these
characters are grouped together into a code-point regions assigned to compatibility characters. Ligatures are a
case in point. Ligatures (.e.g. the joining of adjacent lower-case letters ‘s’ and ‘t’ or ‘f” and ‘i’ in Latin scripts,
whether produced by a scribal practice of not lifting the pen between strokes or dictated by the aesthetics of a
type design) are representational features with no added semantic value beyond that of the two letters they unite
(though for historians of typography their presence and form in a given edition may be of scholarly significance).
However, by the time the Unicode standard was first being debated, it had become common practice to include
single glyphs representing the more common ligatures in the repertoires of some typesetting devices and high-end
printers, and for the coded character sets built into those devices to use a single code point for such glyphs, even
though they represent two distinct abstract characters. So as to increase the acceptance of Unicode among the
makers and users of such devices, it was agreed that some such pseudo-characters should be incorporated into
the standard. Nevertheless, if a project requires the presence of such ligatured forms to be encoded, this should
normally be done via markup, not by the use of a compatibility character. That way, the presence of the ligature
can still be identified (and if desired, rendered visually) where appropriate, but indexing and retrieval software will
treat the code-points in the document as a simple sequential occurrence of the two constituent characters concerned
and so correctly align their semantics with non-ligatured equivalents. Such ligatures should not be confused with
digraphs (usually) indicating diphthongs, as in the French word "cceur". Digraphs are atomic orthographic units
representing abstract characters in their own right, not purely glyphic amalgamations, and indexing and retrieval
software must treat them as such. Where a digraph occurs in a source text, it should normally be encoded using
the appropriate code-point for the single abstract character which it indeed represents, either by direct entry of the
character concerned of through the appropriate CER or NCR.

Precomposed and combining characters and normalization The treatment of characters with diacritical
marks within Unicode shows a similar combination of rigour and pragmatism. It is obvious enough that it would
be feasible to represent many characters with diacritical marks in Latin and some other scripts by a sequence
of code-points, where one code-point designated the base character and the remainder represented one or more
diacritical marks that were to be combined with the base character to produce an appropriate glyphic rendering of
the abstract character concerned. From its earliest phase, the Unicode Consortium espoused this view in theory
but was prepared in practice to compromise by assigning single code-points to precomposed characters which
were already commonly assigned a single distinctive code-point in existing encoding schemes. This means,
however, that for quite a large number of commonly-occurring abstract characters, Unicode has two different,
but logically and semantically equivalent encodings: a precomposed single code point, and a code-point sequence
of a base character plus one or more combining diacritics. Scripts more recently added to Unicode no longer
exhibit this code-point duplication (in current practice no new precomposed characters are defined where the
use of combining characters is possible) but this does nothing to remove the problem caused by the duplications
permanently embodied in older strata of the character set. Together with essentially analogous issues arising from
the encoding of certain East Asian ideographs, this duplication gives rise to the need to practice normalization of
Unicode documents. Normalization is the process of ensuring that a given abstract character is represented in one
way only in a given Unicode document or document collection. The Unicode Consortium provides four standard
normalization forms, of which the Normalization Form C (NFC) seems to be most appropriate for text encoding
projects. The World Wide Web Consortium has produced a document entitled Character Model for the World Wide
Web 1.0Available at http://www.w3.org/TR/charmod., which among other things discusses normalization
issues and outlines some relevant principles. An authoritative reference is Unicode Standard Annex #15 Unicode
Normalization Formsavailable at http://www.unicode.org/reports/tri15/. Individual projects will have
to decide how far their decisions on normalization need be influenced by the fact that at present, by no means
all hardware or software can correctly render (or even consistently identify) abstract characters encoded using

http://www.w3.org/TR/charmod
http://www.unicode.org/reports/tr15/

combining symbols. It should be noted however, that normalization as discussed in the documents above does
not cover the problems mentioned above with East-Asian characters, except for issues connected with composed
characters in Hangul.

It is important that every Unicode-based project should agree on, consistently implement and fully document a
comprehensive and coherent normalization practice. As well as ensuring data integrity within a given project,
a consistently implemented and properly documented normalization policy is essential for successful document
interchange.

Character semantics In addition to the Universal Character Set itself, the Unicode Consortium maintains a
database of additional character semanticshttp://www.unicode.org/ucd/. This includes names for each
character code-point and normative properties for it. Character properties, as given in this database, determine
the semantics and thus the intended use of a code-point or character. It also contains information that might be
needed for correctly processing this character for different purposes. This database is an important reference in
determining which Unicode code-point to use to encode a certain character.

In addition to the printed documentation and lists made available by the Unicode consortium, the information it
contains may also be accessed by a number of search systems over the web (e.g. http://www.eki.ee/letter/).
Examples of character properties included in the database include case, numeric value, directionality, and, where
applicable status as a ‘compatibility character’ At the time of writing (April 2004) there is a draft Unicode
Technical Report (#23), The Unicode Character Property Model that goes into greater detail on properties.
The current version, which will undergo further revision, is athttp://unicode.org/reports/tr23/tr23-2.
html.. Where a project undertakes local definition of characters with code-point in the PUA, it is desirable that
any relevant additional information about the characters concerned should be recorded in an analogous way, as
further discussed under «Chapter 25 Representation of non-standard Characters and Glyphs.»

Character entities in non-validated documents An important difference between SGML and XML is that the
latter allows for the processing of non-validated documents. Since validity and validation are central TEI concerns,
it is unlikely that documents prepared according to these Guidelines will ever be designed or implemented as
merely well-formed in the XML sense. However in the domain of XML technologies, even where a document
declares a DTD or schema, it is not always necessary or appropriate that the parser perform full validation. XSLT
transformation is a common case in point. By the workflow stage at which a document is handed off to an
XSLT process for transformation, it is likely that its associated DTD or schema will already have fulfilled its
role of integrity assurance and quality control, and so it may be undesirable to add validation to the processing
overhead. For this reason, most XSLT processors do not attempt validation by default, even if a DTD is declared
and accessible. This can, however, create a problem where parsed entities, (and character entities in particular
in the present context) are referenced. A validating parser reads all entity declarations from the DTD (including
those for character entities) in the initial phase of processing, so that they can be resolved as and when required.
However, where no validation takes place, it cannot automatically be assumed that the parser will be able to resolve
such entities in all circumstances. The XML standard requires a non-validating parser to read and act on entity
declarations only if they are located within the document’s internal subset (which does not, of course, mean that
the entity declarations have to be manually merged into the document instance in advance of processing: character
entity sets, for instance, count as being in the internal subset if they are placed there via a parameter entity, as
is normal TEI practice). Some parsers when in non-validating mode will also access entity declarations in the
external subset, but this behaviour is not mandated by the standard and should not be relied upon. Provided these
facts are borne in mind, the presence of character entities in a document when parser validation is switched off
should not cause any difficulties.

Issues arising from the internal representations of Unicode In theory it should not be necessary for encoders
to have any knowledge of the various ways in which Unicode code-points can be represented internally within a
document or in the memory of a processing system, but experience shows that problems frequently arise in this
area because of mistaken practice or defective software, and in order to recognise the resulting symptoms and
correct their causes an outline knowledge of certain aspects of Unicode internal representation is desirable.

Encoding errors related to UTF-8 The code-points assigned by Unicode 3.0 and later are notionally 32-bit
integers, and the most straightforward way to represent each such integer in computer storage would be to use
4 eight-bit bytes. However, many of the code-points for characters most commonly used in Latin scripts can be
represented in one byte only and the vast majority of the remainder which are in common use (including those
assigned from the most frequently used PUA range) can be expressed in two bytes alone. This accounts for the use
of UTF-8 and UTF-16 and their special place in the XML standard. UTF-8 and UTF-16 are ways of representing
32-bit code points in an economical way.

UTF-8 is a variable length-encoding: the more significant bits there are in the underlying code-point (or in
everyday terminology the bigger the number used to represent the character), the more bytes UTF-8 uses to
encode it. What makes UTF-8 particularly attractive for representing Latin scripts, explaining its status as the
default encoding in XML documents, is that all code points that can be expressed in seven or fewer bits (the 127
values in the original ASCII character set) are also encoded as the same seven or fewer bits (and therefore in a

http://www.unicode.org/ucd/
http://www.eki.ee/letter/
http://unicode.org/reports/tr23/tr23-2.html
http://unicode.org/reports/tr23/tr23-2.html

single byte) in UTF-8. That is why a document which is actually encoded in pure 7-bit ASCII can be fed to an
XML processor without alteration and without its encoding being explicitly declared: the processor will regard it
as being in the UTF-8 representation of Unicode and be able to handle it correctly on that basis.

However, even within the domain of Latin-based scripts, some projects have documents which use characters
from 8 bit extensions to ASCII, e.g. those in the ISO-8859-n series of encodings, and the way characters which
under ISO-8859-n use all eight bits are encoded in UTF-8 is significantly different, giving rise to puzzling errors.
Abstract characters that have a single byte code-point where the highest bit is set (that is, they have a decimal
numeric representation between 129 and 255) are encoded in ISO-8859-n as a singlebyte with the same value as
the code-point. But in UTF-8 code-point values inside that range are expressed as a two byte sequence. That is
to say, the abstract character in question is no longer represented in the file or in memory by the same number
as its code-point value: it is transformed (hence the T in UTF) into a sequence of two different numbers. Now
as a side-effect of the way such UTF-8 sequences are derived from the underlying code-point value, many of the
single-byte eight-bit values employed in ISO-8859-n encodings are illegal in UTF-8.

This complicated situation has a simple consequence which can cause great bewilderment. XML processors will
effortlessly handle character data in pure 7-bit ASCII without that encoding needing to be declared to the parser,
and will similarly accept documents encoded in an undeclared ISO-8859-n encoding if they happen to use no
characters outside the strict ASCII subset of the ISO character sets; but the parse will immediately fail if an eight-
bit character from an ISO-8859-n set is encountered in the input stream, unless the document’s encoding has been
explicitly and correctly declared. Explicitly declaring the encoding ought to solve the problem, and if the file is
correctly encoded throughout, it will do so. But since text editors and word processors are currently acquiring
different degrees of Unicode support at different rates, projects are likely to find that they have to deal with some
files encoded in UTF-8 along with others in, say, ISO-8859-1. Such encoding differences may go unnoticed,
especially if the proportion of characters where the internal encodings are distinguishable is relatively small (for
example in a long English text with a smattering of French words). If in the process of document preparation two
such files have been merged, or intermixed via ‘cut and paste’ techniques, it is all too possible that the internal
encodings of the resulting files will have become mixed as well. Thanks to misplaced notions of ‘user friendliness’
some current editing software silently corrects such miscodings as it displays the text, so that they remain hidden
until the XML parser terminates with a fatal ‘invalid character’error.

Where erroneously mixed encodings are the source of such an error, altering the encoding declaration will not
solve the problem, though it may obfuscate it. Eight-bit character codes in a file declared as UTF-8 will always
stop the parser. More insidiously, UTF-8 sequences in a file declared as ISO-8859-1 will not halt the parse, but will
cause data corruption, because the parser will silently but erroneously convert each byte in every UTF-8 sequence
into a spurious separate character, introducing semantic errors which may not become apparent until much later
in the processing chain.

In projects that routinely handle documents in non-Latin scripts, everyone is well aware of the need to ensure
correct and consistent encoding, so in such places mixed encoding problems seldom arise, and when they do are
readily identified and remedied. Real confusion tends to arise, however, in projects which have a low awareness of
the issues because they employ predominantly unaccented Latin characters, with only thinly-distributed instances
of accented letters, or other ‘special characters’ where the internal representation under ISO-8859-n and UTF-8 are
different (such as the copyright symbol, or, a frequent troublemaker where eventual HTML output is envisaged,
the ‘non-breaking space’). Even, or especially, if such projects view themselves as concerned only with English
documents, the close relationship between XML and Unicode means they will need to acquire an understanding of
these encoding issues and develop procedures which assure consistency and integrity of encoding and its correct
declaration, including the use of appropriate software for transcoding and verification.

Encoding errors related to UTF-16 The advantages of UTF-8 as an internal representation of Unicode code-
points outlined above do not obtain where documents are in scripts other than Latin, Cyrillic or Hebrew. Where
characters with code-points in the sixteen-bit range (two-byte) predominate, UTF-8 is inappropriate, because
it requires three or more bytes to represent each abstract character. Here the preferred representation of Unicode
(which all XML-conformant parsers must support) is UTF-16, where each code-point corresponding to an abstract
character is represented in two eight-bit bytes The use of ‘surrogate’ values to represent code-points beyond the
16-bit range is passed over here, since it adds a complication that does not affect the key points at issue. This
encoding presents a different hazard, especially while support for Unicode in editing software is relatively uneven
and immature. Because the code-points are represented as sixteen-bit integers stored (in most popular computers)
in two separate bytes, the order in which those bytes are stored becomes important. This is dependent on the
underlying hardware. In the realm of desktop computing, Macintosh machines, for example, store (on disk as well
as in memory) byte pairs representing 16-bit integers with the higher-value byte first, whereas PCs using Intel
processors store the bytes in the reverse order (this is often referred to with Swiftian nomenclature as big-endian
versus little-endian byte order). This means that if a semantically identical plain text file encoded in UTF-16 is
prepared on a Macintosh and on a PC, and the two files are then saved to disk, each byte pair in one file will
be in the reverse order from the corresponding byte pair in the other file. To avoid the obvious incompatibility
problems, the XML standard requires that all documents whose declared encoding is UTF-16 must begin with a
special pseudo-character which is not itself part of the document, but merely a Byte Order Marker (BOM) from

10

which the processor can determine the byte order of the document that follows. Now the insertion of a correct
BOM and the consistent maintenance of the byte order throughout the file ought to be taken care of transparently
by software, but experience, especially from environments where work is distributed across big-endian and little-
endian hardware, shows that this cannot always be taken for granted in the current state of software development.
As with mixed encoding problems involving UTF-8, inconsistent byte-order in UTF-16 files seems to be the
result of merging or cutting and pasting between files using software which does not correctly enforce byte order
integrity, and out of misconceived ‘user friendliness’ which conceals byte-order inconsistencies from the user.
Once more, the result can be files which look correct in an editor, but which the XML parser either rejects outright
or silently passes on in a seriously garbled form. Again, to avoid the consequent errors, projects need to cultivate
an informed awareness of relevant encoding issues and devise policies to avoid them in the first place or detect
them at an early stage.

1.2 Class catalogue
1.3 Pattern catalogue
1.4 Element catalogue

11

	ODD SUBSET
	Languages and Character Sets
	Language identification
	Characters and Character Sets

	Class catalogue
	Pattern catalogue
	Element catalogue

